Project description:The gradient of Bicoid (Bcd) is key for the establishment of the anterior-posterior axis in Drosophila embryos. The gradient properties are compatible with the SDD model in which Bcd is synthesized at the anterior pole and then diffuses into the embryo and is degraded with a characteristic time. Within this model, the Bcd diffusion coefficient is critical to set the timescale of gradient formation. This coefficient has been measured using two optical techniques, Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS), obtaining estimates in which the FCS value is an order of magnitude larger than the FRAP one. This discrepancy raises the following questions: which estimate is "correct''; what is the reason for the disparity; and can the SDD model explain Bcd gradient formation within the experimentally observed times? In this paper, we use a simple biophysical model in which Bcd diffuses and interacts with binding sites to show that both the FRAP and the FCS estimates may be correct and compatible with the observed timescale of gradient formation. The discrepancy arises from the fact that FCS and FRAP report on different effective (concentration dependent) diffusion coefficients, one of which describes the spreading rate of the individual Bcd molecules (the messengers) and the other one that of their concentration (the message). The latter is the one that is more relevant for the gradient establishment and is compatible with its formation within the experimentally observed times.
Project description:To determined the pathogen-specific incidence of respiratory virus infection in Hutterite communities occurring over the 2008-2009 influenza season and assess temporal characteristics of respiratory illness related to infection.3273 participants community members enrolled in a cluster randomized trial of influenza vaccine were studied.One hundred forty-nine participants had laboratory-confirmed influenza, and 595 had at least one episode of laboratory-confirmed respiratory viral infection other than influenza. Entero/rhinovirus had the highest incidence among children<5 years.A decline in the incidence of infections with age was observed for influenza as well as for most other respiratory viruses.
Project description:The risk of transmission of respiratory tract infections is considerably enhanced at mass gathering (MG) religious events. Hajj is an annual Islamic MG event with approximately 3 million Muslim pilgrims from over 180 countries concentrated in Makkah, Saudi Arabia. This study aimed to investigate the genetic diversity of influenza viruses circulating among pilgrims during the Hajj pilgrimage. We performed a cross-sectional analytical study where nasopharyngeal swabs (NPs) from pilgrims with respiratory tract illnesses presenting to healthcare facilities during the 2019 Hajj were screened for influenza viruses. Influenza A subtypes and influenza B lineages were determined by multiplex RT-PCR for positive influenza samples. The phylogenetic analysis was carried out for the hemagglutination (HA) gene. Out of 185 nasopharyngeal samples, 54 were positive for the human influenza virus. Of these, 27 were influenza A H1N1 and 19 H3N2, 4 were untypable influenza A, and 4 were influenza B. Phylogenetic analysis revealed that the H1N1 and H3N2 strains differentiated into different and independent genetic groups and formed close clusters with selected strains of influenza viruses from various locations. To conclude, this study demonstrates a high genetic diversity of circulating influenza A subtypes among pilgrims during the Hajj Season. There is a need for further larger studies to investigate in-depth the genetic characteristics of influenza viruses and other respiratory viruses during Hajj seasons.
Project description:The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.
Project description:Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation-driving cytokine release and Granzyme B upregulation-is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.
Project description:During early stages of development vertebrates rely on an immature immune system to fight pathogens, but in non mammalian species few studies have taken an in-depth analysis of the transition from reliance on innate immune mechanisms to the appearance of adaptive immunity. Using rainbow trout as a model we characterized responses to two natural pathogens of this species, the Gram negative bacterium Aeromonas salmonicida and the virus VHSV, using microarray analysis at four early life history stages; eyed egg, post hatch, first feeding and three weeks post first feeding when adaptive immunity starts to be effective. All stages responded to both infections, but the complexity of the response increased with developmental stage. The response to virus showed a clear interferon response only from first feeding. In contrast, bacterial infection induced a marked response from early stages, with modulation of inflammatory, antimicrobial peptide and complement genes across all developmental stages. Whilst the viral and bacterial responses were distinct, there were modulated genes in common, mainly of general inflammatory molecules. This work provides a first platform to explore the development of fish immunity to infection, and to compare the age-dependent changes (from embryo to adults) across vertebrates.
Project description:Influenza poses a serious threat to both individual and public health. This study aimed to investigate the virological and epidemiological characteristics of influenza infections and to explore the genetic diversity of the circulating influenza viruses. In total, 1886 nasopharyngeal specimens from patients with acute respiratory illnesses were tested against 13 respiratory viruses using a multiplex real-time PCR. Whole-genome sequencing, phylogenetic, and amino acid analyses of representative influenza strains were performed. At least one respiratory virus was detected in 869 (46.1%) patients; 87 (4.6%) were co-infected with two or three viruses. Influenza A(H1N1)pdm09 was the most prevalent virus (16.1%), followed by rhinoviruses (8.1%) and RSV (6.7%). Hemagglutinin (HA) genes of the 74 influenza A(H1N1)pdm09 viruses were categorized in subclades C.1.8, C.1.9, and C.1 within clade 5a.2a and D1, D.2, and D.3 within clade 5a.2a.1. The A(H3N2) viruses analyzed belonged to clade 2a.3a.1, subclades J.2 and J.1. The sequenced B/Victoria lineage viruses fell into clade V1A.3a.2, subclades C.5.6 and C.5.7. Amino acid substitutions in most viral proteins were identified compared with the vaccine strains, including in the HA antigenic sites. This study demonstrated the dominant distribution of the influenza A(H1N1)pdm09 virus among the respiratory viruses studied and the genetic diversity of the circulating influenza viruses.
Project description:Critically ill patients are admitted to an intensive care unit (ICU) for multiple reasons. In this study, we aim to analyze the current evidence and findings associated with influenza and other emergent viral infections, namely, herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and cytomegalovirus (CMV).Among medical conditions, community-acquired respiratory infections are the most frequent reason for ventilatory support in ICUs. Community-acquired pneumonia in a severe form including the need of invasive mechanical ventilation and/or vasopressors is associated with high mortality rates. However, after the pandemic that occurred in 2009 by H1N1 influenza, the number of cases being admitted to ICUs with viral infections is on the rise. Patients in whom an etiology would not have been identified in the past are currently being tested with more sensitive viral molecular diagnostic tools, and patients being admitted to ICUs have more preexisting medical conditions that can predispose to viral infections. Viral infections can trigger the dysregulation of the immune system by inducing a massive cytokine response. This cytokine storm can cause endothelial damage and dysfunction, deregulation of coagulation, and, consequently, alteration of microvascular permeability, tissue edema, and shock. In severe influenza, this vascular hyperpermeability can lead to acute lung injury, multiorgan failure, and encephalopathy. In immunocompetent patients, the most common viral infections are respiratory, and influenza should be considered in patients with severe respiratory failure being admitted to ICU. Seasonality and coinfection are two important features when considering influenza as a pathogen in critically ill patients.Herpesviridae (HSV, CMV, and EBV) may reactivate in ICU patients, and their reactivation is associated with morbidity/mortality. However, whether a specific treatment may impact on outcome remains to be determined.
Project description:Following the first human infection with the influenza A (H10N8) virus in Nanchang, China in December 2013, we identified two additional patients on January 19 and February 9, 2014. The epidemiologic, clinical, and virological data from the patients and the environmental specimen collected from 23 local live poultry markets (LPMs) were analyzed. The three H10N8 cases had a history of poultry exposure and presented with high fever (>38°C), rapidly progressive pneumonia and lymphopenia. Substantial high levels of cytokines and chemokines were observed. The sequences from an isolate (A/Environment/Jiangxi/03489/2013 [H10N8]) in an epidemiologically linked LPM showed highly identity with human H10N8 virus, evidencing LPM as the source of human infection. The HA and NA of human and environmental H10N8 isolates showed high identity (99.1-99.9%) while six genotypes with internal genes derived from H9N2, H7N3 and H7N9 subtype viruses were detected in environmental H10N8 isolates. The genotype of the virus causing human infection, Jiangxi/346, possessed a whole internal gene set of the A/Environment/Jiangxi/10618/2014(H9N2)-like virus. Thus, our findings support the notion that LPMs can act as both a gene pool for the generation of novel reassortants and a source for human infection, and intensive surveillance and management should therefore be conducted.