Principles of open source bioinstrumentation applied to the poseidon syringe pump system.
Ontology highlight
ABSTRACT: The poseidon syringe pump and microscope system is an open source alternative to commercial systems. It costs less than $400 and can be assembled in under an hour using the instructions and source files available at https://pachterlab.github.io/poseidon . We describe the poseidon system and use it to illustrate design principles that can facilitate the adoption and development of open source bioinstruments. The principles are functionality, robustness, safety, simplicity, modularity, benchmarking, and documentation.
Project description:This article explores a new open-source method for developing and manufacturing high-quality scientific equipment suitable for use in virtually any laboratory. A syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them. Details are provided covering the use of the CAD software and the RepRap 3-D printer. The use of an open-source Rasberry Pi computer as a wireless control device is also illustrated. Performance of the syringe pump was assessed and the methods used for assessment are detailed. The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications.
Project description:The operation of microfluidic devices requires precise and constant fluid flow. Microfluidic systems in low-resource settings require a portable, inexpensive, and electricity-free pumping approach due to the rising demand for microfluidics in point-of-care testing (POCT). Open-source alternatives, employing 3D printing and motors, offer affordability. However, using motors require electrical power, which often relies on external sources, hindering the on-site use of open-source pumps. This study introduces a spring-driven, 3D-printed syringe pump, eliminating the need for an external power source. The syringe pump is operated by the flat spiral spring's torque. By manually winding up the mainspring, the syringe pump can be operated without electricity. Various flow rates can be achieved by utilizing different syringe sizes and choosing the right gear combinations. All the parts of the syringe pump can be fabricated by 3D printing, requiring no additional components that require electricity. It operates by winding a mainspring and is user-friendly, allowing flow rate adjustments by assembling gears that modulate syringe plunger pushing velocity. The fabrication cost is $25-30 and can be assembled easily by following the instructions. We expect that the proposed syringe pump will enable the utilization of microfluidic technologies in resource-limited settings, promoting the adoption of microfluidics. Detailed information and results are available in the original research paper (https://doi.org/10.1016/j.snb.2024.135289).
Project description:A cheap, open source 3D printer (Creality Ender 3) is transformed into an Open Hardware, programmable syringe pump set. Only 3 parts need to be purchased outside of the printer kit. All other parts are either in the Ender 3 kit, or can be 3D printed. No prior knowledge in electronics or programming languages is required. The pumps are controlled by the 3D printer firmware and motherboard and programmed in simple G-code text files. The total cost of a three pumps setup is ∼€170. The pumps are capable of reaching stable flows down to 5 µL/min using cheap, disposable 10 mL syringes. Higher flow speeds are also achievable, in the order of mL/min.
Project description:OTTO is an open-source automated liquid handler that can be fabricated at a cost of $1,500 using off-the-shelf and 3D-printable parts as an alternative to commercial devices. Open-source approaches have been applied to build syringe pumps, centrifuges, and other laboratory equipment. These devices are affordable but generally rely on a single motor to perform simple operations and thus do not fully utilize the potential of the Maker Movement. Open-source linear actuators and microcontrollers enable the fabrication of more complex laboratory instruments that rely on 3D positioning and accurate dispensing of fluids, such as automated liquid handlers. These instruments can be built rapidly and affordably, thereby providing access to highly reproducible sample preparation for common biological assays such as qPCR. We applied the design principles of speed and accuracy, unattended automation, and open-source components to build an automated liquid handler that controls micropipetting of liquids in 3D space at speeds and positional resolutions required for qPCR. In benchmarking studies, OTTO showed accuracy and sample preparation times comparable to manual qPCR. The ability to control linear motion and liquid dispensing using affordable off-the-shelf and 3D-printable parts can facilitate the adoption of open-source automated liquid handlers for qPCR, bioplotting, and other bioinstrumentation applications.
Project description:Development of new additive manufacturing materials often requires the production of several batches of relatively large volumes in order to print and test objects. This can be difficult for many materials that are expensive or difficult to produce in large volumes on the laboratory scale. Bioprinter systems are advantageous in this regard, however, commercial systems are expensive or do not have the ability to use photopolymers. Herein, we outline a Syringe Pump Extruder and Curing System (SPECS) modification for inexpensive filament-based 3D printers which enables the use of standard bioplotter materials and photopolymers. The system is capable of using multiple syringe volumes and needle sizes that can be quickly and easily exchanged. The SPECS modification is demonstrated using a Prusa i3 mk3 fused filament fabrication printer to print several 3D objects and films using stereolithography (SLA) photopolymer resin. Geometric accuracy in the X, Y, and Z directions was ±0.1 mm using a 5 ml syringe, 22-gauge needle, and commercial SLA resin. The SPECS system could be of great benefit for laboratories pursing material development in the area of additive manufacturing.
Project description:Recent advances in embedded 3D bioprinting have significantly improved the resolution of individual filaments to below 100 μm; however, printing with such small filaments requires accurate extrusion of nanoliter volumes of bioink. Commercially available bioprinters and extruders are expensive and most utilize pneumatic control, which limits the minimum extrusion volume and prevents retraction (pulling bioink back into the reservoir), which is essential to printing high resolution features and complex internal geometry. Here we present a new generation of our open-source syringe pump designed for extrusion-based 3D bioprinting of soft materials: the Replistruder 4. The Replistruder 4 takes advantage of the geometry customizability and ease of 3D plastic printing while improving performance by integrating mass produced high-precision linear motion components. Simultaneously this new syringe pump remains compact and lightweight enough for several to be utilized on a 3D bioprinter for multimaterial bioprinting. To facilitate multiple use cases the Replistruder 4 is compatible with a range of syringes including disposable BD and Hamilton gastight syringes. In addition, we describe the process of designing clamps for other syringes. We demonstrate the performance of a Replistruder 4 with a 2.5 mL Hamilton gastight syringe by printing collagen type I constructs with individual filaments comprising 3.35 nL and patent channels down to 300 μm in width. With smaller volume Hamilton gastight syringes this performance can be further improved. Thus, the Replistruder 4 provides an open-source solution to print soft materials at the resolution limits of current embedded bioprinting platforms.
Project description:An open-source precision pressure pump system and control software is presented, primarily designed for the experimental microfluidics community, although others may find additional uses for this precision pressure source. This mechatronic system is coined 'µPump,' and its performance rivals that of commercially available systems, at a fraction of the cost. The pressure accuracy, stability, and resolution are 0.09%, 0.02%, and 0.02% of the full span, respectively. The settling time to reach 2 bar from zero and stabilize is less than 2 s. Material for building a four-channel µPump (approx. $3000 USD) or an eight-channel µPump (approx. $5000 USD) is approximately a quarter, or a third of the cost of buying a high-end commercial system, respectively. The design rationale is presented, together with documented design details and software, so that the system may be replicated or customized to particular applications. µPump can be used for two-phase droplet microfluidics, single-phase microfluidics, gaseous flow microfluidics and any other applications requiring precise fluid handling. µPump provides researchers, students, and startups with a cost-effective solution for precise fluid control.
Project description:Syringe pump extruders are required for a wide range of 3D printing applications, including bioprinting, embedded printing, and food printing. However, the mass of the syringe becomes a major challenge for most printing platforms, requiring compromises in speed, resolution and/or volume. To address these issues, we have designed a syringe pump large volume extruder (LVE) that is compatible with low-cost, open source 3D printers, and herein demonstrate its performance on a PrintrBot Simple Metal. Key aspects of the LVE include: (1) it is open source and compatible with open source hardware and software, making it inexpensive and widely accessible to the 3D printing community, (2) it utilizes a standard 60 mL syringe as its ink reservoir, effectively increasing print volume of the average bioprinter, (3) it is capable of retraction and high speed movements, and (4) it can print fluids using nozzle diameters as small as 100 µm, enabling the printing of complex shapes/objects when used in conjunction with the freeform reversible embedding of suspended hydrogels (FRESH) 3D printing method. Printing performance of the LVE is demonstrated by utilizing alginate as a model biomaterial ink to fabricate parametric CAD models and standard calibration objects.
Project description:OBJECTIVE:Fluorescence imaging through head-mounted microscopes in freely behaving animals is becoming a standard method to study neural circuit function. Flexible, open-source designs are needed to spur evolution of the method. APPROACH:We describe a miniature microscope for single-photon fluorescence imaging in freely behaving animals. The device is made from 3D printed parts and off-the-shelf components. These microscopes weigh less than 1.8?g, can be configured to image a variety of fluorophores, and can be used wirelessly or in conjunction with active commutators. Microscope control software, based in Swift for macOS, provides low-latency image processing capabilities for closed-loop, or BMI, experiments. MAIN RESULTS:Miniature microscopes were deployed in the songbird premotor region HVC (used as a proper name), in singing zebra finches. Individual neurons yield temporally precise patterns of calcium activity that are consistent over repeated renditions of song. Several cells were tracked over timescales of weeks and months, providing an opportunity to study learning related changes in HVC. SIGNIFICANCE:3D printed miniature microscopes, composed completely of consumer grade components, are a cost-effective, modular option for head-mounting imaging. These easily constructed and customizable tools provide access to cell-type specific neural ensembles over timescales of weeks.
Project description:Nitrate, the most oxidized form of nitrogen, is regulated to protect people and animals from harmful levels as there is a large over abundance due to anthropogenic factors. Widespread field testing for nitrate could begin to address the nitrate pollution problem, however, the Cadmium Reduction Method, the leading certified method to detect and quantify nitrate, demands the use of a toxic heavy metal. An alternative, the recently proposed Environmental Protection Agency Nitrate Reductase Nitrate-Nitrogen Analysis Method, eliminates this problem but requires an expensive proprietary spectrophotometer. The development of an inexpensive portable, handheld photometer will greatly expedite field nitrate analysis to combat pollution. To accomplish this goal, a methodology for the design, development, and technical validation of an improved open-source water testing platform capable of performing Nitrate Reductase Nitrate-Nitrogen Analysis Method. This approach is evaluated for its potential to i) eliminate the need for toxic chemicals in water testing for nitrate and nitrite, ii) reduce the cost of equipment to perform this method for measurement for water quality, and iii) make the method easier to carryout in the field. The device is able to perform as well as commercial proprietary systems for less than 15% of the cost for materials. This allows for greater access to the technology and the new, safer nitrate testing technique.