Unknown

Dataset Information

0

MiR526b and miR655 Induce Oxidative Stress in Breast Cancer.


ABSTRACT: In eukaryotes, overproduction of reactive oxygen species (ROS) causes oxidative stress, which contributes to chronic inflammation and cancer. MicroRNAs (miRNAs) are small, endogenously produced RNAs that play a major role in cancer progression. We established that overexpression of miR526b/miR655 promotes aggressive breast cancer phenotypes. Here, we investigated the roles of miR526b/miR655 in oxidative stress in breast cancer using in vitro and in silico assays. miRNA-overexpression in MCF7 cells directly enhances ROS and superoxide (SO) production, detected with fluorescence assays. We found that cell-free conditioned media contain extracellular miR526b/miR655 and treatment with these miRNA-conditioned media causes overproduction of ROS/SO in MCF7 and primary cells (HUVECs). Thioredoxin Reductase 1 (TXNRD1) is an oxidoreductase that maintains ROS/SO concentration. Overexpression of TXNRD1 is associated with breast cancer progression. We observed that miR526b/miR655 overexpression upregulates TXNRD1 expression in MCF7 cells, and treatment with miRNA-conditioned media upregulates TXNRD1 in both MCF7 and HUVECs. Bioinformatic analysis identifies two negative regulators of TXNRD1, TCF21 and PBRM1, as direct targets of miR526b/miR655. We validated that TCF21 and PBRM1 were significantly downregulated with miRNA upregulation, establishing a link between miR526b/miR655 and TXNRD1. Finally, treatments with oxidative stress inducers such as H2O2 or miRNA-conditioned media showed an upregulation of miR526b/miR655 expression in MCF7 cells, indicating that oxidative stress also induces miRNA overexpression. This study establishes the dynamic functions of miR526b/miR655 in oxidative stress induction in breast cancer.

SUBMITTER: Shin B 

PROVIDER: S-EPMC6720387 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

miR526b and miR655 Induce Oxidative Stress in Breast Cancer.

Shin Bonita B   Feser Riley R   Nault Braydon B   Hunter Stephanie S   Maiti Sujit S   Ugwuagbo Kingsley Chukwunonso KC   Majumder Mousumi M  

International journal of molecular sciences 20190819 16


In eukaryotes, overproduction of reactive oxygen species (ROS) causes oxidative stress, which contributes to chronic inflammation and cancer. MicroRNAs (miRNAs) are small, endogenously produced RNAs that play a major role in cancer progression. We established that overexpression of miR526b/miR655 promotes aggressive breast cancer phenotypes. Here, we investigated the roles of miR526b/miR655 in oxidative stress in breast cancer using in vitro and in silico assays. miRNA-overexpression in MCF7 cel  ...[more]

Similar Datasets

| S-EPMC6589211 | biostudies-literature
| S-EPMC4031460 | biostudies-literature
| S-EPMC5580344 | biostudies-literature
| S-EPMC7081201 | biostudies-literature
| S-EPMC7402184 | biostudies-literature
| S-EPMC4493866 | biostudies-literature
| S-EPMC3796339 | biostudies-literature
| S-EPMC4251690 | biostudies-literature
| S-EPMC5138627 | biostudies-literature
| S-EPMC8012380 | biostudies-literature