Unknown

Dataset Information

0

Redox-Active Gel Electrolyte Combined with Branched Polyaniline Nanofibers Doped with Ferrous Ions for Ultra-High-Performance Flexible Supercapacitors.


ABSTRACT: In this work, the effects of utilizing an Fe2+/Fe3+ redox-active electrolyte and Fe2+-doped polyaniline (PANI) electrode material on the performance of an assembled supercapacitor (SC) were studied. The concentration of the redox couple additive in the electrolyte of the SC was optimized to be 0.5 M. With the optimized concentration of 0.4 M Fe2+, the doped PANI branched nanofibers electropolymerized onto titanium mesh were much thinner, cleaner, and more branched than normal PANI. A specific capacitance (Cs) of 8468 F g-1 for the 0.4 M Fe2+/PANI electrode in the 1 M H2SO4 + 0.5 M Fe2+/Fe3+ gel electrolyte and an energy density of 218.1 Wh kg-1 at a power density of 1854.4 W kg-1 for the resultant SC were achieved, which were much higher than those of the conventional PANI electrode tested in a normal H2SO4 electrolyte (404 F g-1 and 24.9 Wh kg-1). These results are among the highest reported for PANI-based SCs in the literature so far and demonstrate the potential effectiveness of this strategy to improve the electrochemical performance of flexible SCs by modifying both the electrode and electrolyte.

SUBMITTER: Mo Y 

PROVIDER: S-EPMC6722530 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Redox-Active Gel Electrolyte Combined with Branched Polyaniline Nanofibers Doped with Ferrous Ions for Ultra-High-Performance Flexible Supercapacitors.

Mo Youtian Y   Meng Wei W   Xia Yanlin Y   Du Xusheng X  

Polymers 20190816 8


In this work, the effects of utilizing an Fe<sup>2+</sup>/Fe<sup>3+</sup> redox-active electrolyte and Fe<sup>2+</sup>-doped polyaniline (PANI) electrode material on the performance of an assembled supercapacitor (SC) were studied. The concentration of the redox couple additive in the electrolyte of the SC was optimized to be 0.5 M. With the optimized concentration of 0.4 M Fe<sup>2+</sup>, the doped PANI branched nanofibers electropolymerized onto titanium mesh were much thinner, cleaner, and m  ...[more]

Similar Datasets

| S-EPMC4894970 | biostudies-literature
| S-EPMC7315605 | biostudies-literature
| S-EPMC7696344 | biostudies-literature
| S-EPMC9036904 | biostudies-literature
| S-EPMC7599491 | biostudies-literature
| S-EPMC7600686 | biostudies-literature
| S-EPMC6606993 | biostudies-literature
| S-EPMC10779345 | biostudies-literature
| S-EPMC9105037 | biostudies-literature
| S-EPMC10222225 | biostudies-literature