Unknown

Dataset Information

0

ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer.


ABSTRACT: Poor prognosis in pancreatic cancer (PanCa) is partially due to chemoresistance to gemcitabine (GEM). Glucose metabolism has been revealed to contribute to the therapeutic resistance and pluripotent state of PanCa cells. However, few studies have focused on the effects of GEM on cancer cell metabolism, stemness of tumor cells, and molecular mechanisms that critically influence PanCa treatment. We demonstrate that GEM treatment induces metabolic reprogramming, reducing mitochondrial oxidation and upregulating aerobic glycolysis, and promotes stem-like behaviors in cancer cells. Inhibiting aerobic glycolysis suppresses cancer cell stemness and strengthens GEM's cytotoxicity. GEM-induced metabolic reprogramming is KRAS dependent, as knockdown of KRAS reverses the metabolic shift. GEM-induced metabolic reprogramming also activates AMP-activated protein kinase (AMPK), which promotes glycolytic flux and cancer stemness. In addition, GEM-induced reactive oxygen species (ROS) activate the KRAS/AMPK pathway. This effect was validated by introducing exogenous hydrogen peroxide (H2O2). Taken together, these findings reveal a counterproductive GEM effect during PanCa treatment. Regulating cellular redox, targeting KRAS/AMPK signaling, or reversing metabolic reprogramming might be effective approaches to eliminate cancer stem cells (CSCs) and enhance chemosensitivity to GEM to improve the prognosis of PanCa patients.

SUBMITTER: Zhao H 

PROVIDER: S-EPMC6726755 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer.

Zhao Hengqiang H   Wu Shihong S   Li Hehe H   Duan Qingke Q   Zhang Zhengle Z   Shen Qiang Q   Wang Chunyou C   Yin Tao T  

Molecular therapy oncolytics 20190809


Poor prognosis in pancreatic cancer (PanCa) is partially due to chemoresistance to gemcitabine (GEM). Glucose metabolism has been revealed to contribute to the therapeutic resistance and pluripotent state of PanCa cells. However, few studies have focused on the effects of GEM on cancer cell metabolism, stemness of tumor cells, and molecular mechanisms that critically influence PanCa treatment. We demonstrate that GEM treatment induces metabolic reprogramming, reducing mitochondrial oxidation and  ...[more]

Similar Datasets

| S-EPMC5885341 | biostudies-literature
| S-EPMC10076501 | biostudies-literature
| S-EPMC4872785 | biostudies-literature
| S-EPMC5601663 | biostudies-literature
| S-EPMC6263055 | biostudies-literature
| S-EPMC7410906 | biostudies-literature
| S-EPMC6448060 | biostudies-literature
| S-EPMC5655019 | biostudies-literature
| S-EPMC3674365 | biostudies-literature
| S-EPMC7492486 | biostudies-literature