Unknown

Dataset Information

0

Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes.


ABSTRACT: Iron(V)-nitrido and -oxo complexes have been proposed as key intermediates in a diverse array of chemical transformations. Herein we present a detailed electronic-structure analysis of [FeV(N)(TPP)] (1, TPP2- = tetraphenylporphyrinato), and [FeV(N)(cyclam-ac)]+ (2, cyclam-ac = 1,4,8,11-tetraazacyclotetradecane-1-acetato) using electron paramagnetic resonance (EPR) and 57Fe Mössbauer spectroscopy coupled with wave function based complete active-space self-consistent field (CASSCF) calculations. The findings were compared with all other well-characterized genuine iron(V)-nitrido and -oxo complexes, [FeV(N)(MePy2tacn)](PF6)2 (3, MePy2tacn = methyl- N', N?-bis(2-picolyl)-1,4,7-triazacyclononane), [FeV(N){PhB( t-BuIm)3}]+ (4, PhB(tBuIm)3- = phenyltris(3- tert-butylimidazol-2-ylidene)borate), and [FeV(O)(TAML)]- (5, TAML4- = tetraamido macrocyclic ligand). Our results revealed that complex 1 is an authenticated iron(V)-nitrido species and contrasts with its oxo congener, compound I, which contains a ferryl unit interacting with a porphyrin radical. More importantly, tetragonal iron(V)-nitrido and -oxo complexes 1-3 and 5 all possess an orbitally nearly doubly degenerate S = 1/2 ground state. Consequently, analogous near-axial EPR spectra with g|| < g? ? 2 were measured for them, and their g|| and g? values were found to obey a simple relation of g?2 + (2 - g?)2 = 4. However, the bonding situation for trigonal iron(V)-nitrido complex 4 is completely different as evidenced by its distinct EPR spectrum with g|| < 2 < g?. Further in-depth analyses suggested that tetragonal low spin iron(V)-nitrido and -oxo complexes feature electronic structures akin to those found for complexes 1-3 and 5. Therefore, the characteristic EPR signals determined for 1-3 and 5 can be used as a spectroscopic marker to identify such highly reactive intermediates in catalytic processes.

SUBMITTER: Chang HC 

PROVIDER: S-EPMC6728100 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes.

Chang Hao-Ching HC   Mondal Bhaskar B   Fang Huayi H   Neese Frank F   Bill Eckhard E   Ye Shengfa S  

Journal of the American Chemical Society 20190130 6


Iron(V)-nitrido and -oxo complexes have been proposed as key intermediates in a diverse array of chemical transformations. Herein we present a detailed electronic-structure analysis of [Fe<sup>V</sup>(N)(TPP)] (1, TPP<sup>2-</sup> = tetraphenylporphyrinato), and [Fe<sup>V</sup>(N)(cyclam-ac)]<sup>+</sup> (2, cyclam-ac = 1,4,8,11-tetraazacyclotetradecane-1-acetato) using electron paramagnetic resonance (EPR) and <sup>57</sup>Fe Mössbauer spectroscopy coupled with wave function based complete acti  ...[more]

Similar Datasets

| S-EPMC3869391 | biostudies-literature
| S-EPMC8256814 | biostudies-literature
| S-EPMC4436889 | biostudies-literature
| S-EPMC4390514 | biostudies-literature
| S-EPMC7007536 | biostudies-literature
| S-EPMC6048129 | biostudies-literature
| S-EPMC130534 | biostudies-literature
| S-EPMC9251573 | biostudies-literature
| S-EPMC3150385 | biostudies-literature
| S-EPMC9890500 | biostudies-literature