Unknown

Dataset Information

0

A Plasmonic Approach to Study Protein Interaction Kinetics through the Dimerization of Functionalized Ag Nanoparticles.


ABSTRACT: Understanding the kinetics of protein interactions plays a key role in biology with significant implications for the design of analytical methods for disease monitoring and diagnosis in medical care, research and industrial applications. Herein, we introduce a novel plasmonic approach to study the binding kinetics of protein-ligand interactions following the formation of silver nanoparticles (Ag NPs) dimers by UV-Vis spectroscopy that can be used as probes for antigen detection and quantification. To illustrate and test the method, the kinetics of the prototype biotin-streptavidin (Biot-STV) pair interaction was studied. Controlled aggregates (dimers) of STV functionalized Ag NPs were produced by adding stoichiometric quantities of gliadin-specific biotinylated antibodies (IgG-Biot). The dimerization kinetics was studied in a systematic way as a function of Ag NPs size and at different concentrations of IgG-Biot. The kinetics data have shown to be consistent with a complex reaction mechanism in which only the Ag NPs attached to the IgG-Biot located in a specific STV site are able to form dimers. These results help in elucidating a complex reaction mechanism involved in the dimerization kinetics of functionalized Ag NPs, which can serve as probes in surface plasmon resonance-based bioassays for the detection and quantification of different biomarkers or analytes of interest.

SUBMITTER: Mercadal PA 

PROVIDER: S-EPMC6739483 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Plasmonic Approach to Study Protein Interaction Kinetics through the Dimerization of Functionalized Ag Nanoparticles.

Mercadal Pablo A PA   Motrich Ruben D RD   Coronado Eduardo A EA  

Scientific reports 20190911 1


Understanding the kinetics of protein interactions plays a key role in biology with significant implications for the design of analytical methods for disease monitoring and diagnosis in medical care, research and industrial applications. Herein, we introduce a novel plasmonic approach to study the binding kinetics of protein-ligand interactions following the formation of silver nanoparticles (Ag NPs) dimers by UV-Vis spectroscopy that can be used as probes for antigen detection and quantificatio  ...[more]

Similar Datasets

| S-EPMC4878496 | biostudies-literature
| S-EPMC6843713 | biostudies-literature
| S-EPMC5763282 | biostudies-literature
| S-EPMC7792966 | biostudies-literature
| S-EPMC4901268 | biostudies-literature
| S-EPMC4585705 | biostudies-other
| S-EPMC3947887 | biostudies-literature
| S-EPMC6359520 | biostudies-literature
| S-EPMC3483240 | biostudies-literature
| S-EPMC3968450 | biostudies-literature