Unknown

Dataset Information

0

CRISPR/Cas9 knockout of USP18 enhances type I IFN responsiveness and restricts HIV-1 infection in macrophages.


ABSTRACT: The IFN-stimulated gene ubiquitin-specific proteinase 18 (USP18) encodes a protein that negatively regulates T1 IFN signaling via stearic inhibition of JAK1 recruitment to the IFN-α receptor 2 subunit (IFNAR2). Here, we demonstrate that USP18 expression is induced by HIV-1 in a T1 IFN-dependent manner. Experimental depletion of USP18 by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing results in a significant restriction of HIV-1 replication in an induced pluripotent stem cell (iPSC)-derived macrophage model. In the absence of USP18, macrophages have increased responsiveness to stimulation with T1 IFNs with prolonged phosphorylation of STAT1 and STAT2 and increased expression of IFN-stimulated genes that are key for antiviral responses. Interestingly, HIV-1 requires some signaling through the T1 IFN receptor to replicate efficiently because a neutralizing antibody that inhibits T1 IFN activity reduces HIV-1 replication rate in monocyte-derived macrophages. USP18 induction by HIV-1 tunes the IFN response to optimal levels allowing for efficient transcription from the HIV-1 LTR promoter while minimizing the T1 IFN-induced antiviral response that would otherwise restrict viral replication and spread. Finally, iPSC and CRISPR/Cas9 gene targeting offer a powerful tool to study host factors that regulate innate immune responses.

SUBMITTER: Taylor JP 

PROVIDER: S-EPMC6754309 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7461958 | biostudies-literature
| S-EPMC7895961 | biostudies-literature
| S-EPMC7556750 | biostudies-literature
| S-EPMC4674802 | biostudies-other
| S-EPMC6328437 | biostudies-literature
| S-EPMC6396427 | biostudies-literature
| S-EPMC4699467 | biostudies-literature
| S-EPMC4154755 | biostudies-literature
| S-EPMC6022269 | biostudies-literature
| S-EPMC4089965 | biostudies-literature