Unknown

Dataset Information

0

Dual-Reactivity trans-Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching.


ABSTRACT: Sulfenylation (RSH ? RSOH) is a post-translational protein modification associated with cellular mechanisms for signal transduction and the regulation of reactive oxygen species. Protein sulfenic acids are challenging to identify and study due to their electrophilic and transient nature. Described here are sulfenic acid modifying trans-cycloocten-5-ol (SAM-TCO) probes for labeling sulfenic acid functionality in live cells. These probes enable a new mode of capturing sulfenic acids via transannular thioetherification, whereas "ordinary" trans-cyclooctenes react only slowly with sulfenic acids. SAM-TCOs combine with sulfenic acid forms of a model peptide and proteins to form stable adducts. Analogously, SAM-TCO with the selenenic acid form of a model protein leads to a selenoetherification product. Control experiments illustrate the need for the transannulation process coupled with the activated trans-cycloalkene functionality. Bioorthogonal quenching of excess unreacted SAM-TCOs with tetrazines in live cells provides both temporal control and a means of preventing artifacts caused by cellular-lysis. A SAM-TCO biotin conjugate was used to label protein sulfenic acids in live cells, and subsequent quenching by tetrazine prevented further labeling even under harshly oxidizing conditions. A cell-based proteomic study validates the ability of SAM-TCO probes to identify and quantify known sulfenic acid redox proteins as well as targets not captured by dimedone-based probes.

SUBMITTER: Scinto SL 

PROVIDER: S-EPMC6756850 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dual-Reactivity <i>trans</i>-Cyclooctenol Probes for Sulfenylation in Live Cells Enable Temporal Control via Bioorthogonal Quenching.

Scinto Samuel L SL   Ekanayake Oshini O   Seneviratne Uthpala U   Pigga Jessica E JE   Boyd Samantha J SJ   Taylor Michael T MT   Liu Jun J   Am Ende Christopher W CW   Rozovsky Sharon S   Fox Joseph M JM  

Journal of the American Chemical Society 20190709 28


Sulfenylation (RSH → RSOH) is a post-translational protein modification associated with cellular mechanisms for signal transduction and the regulation of reactive oxygen species. Protein sulfenic acids are challenging to identify and study due to their electrophilic and transient nature. Described here are sulfenic acid modifying <i>trans</i>-cycloocten-5-ol (SAM-TCO) probes for labeling sulfenic acid functionality in live cells. These probes enable a new mode of capturing sulfenic acids via tra  ...[more]

Similar Datasets

| S-EPMC10198265 | biostudies-literature
| S-EPMC5022565 | biostudies-literature
| S-EPMC7203098 | biostudies-literature
| S-EPMC6941979 | biostudies-literature
| S-EPMC10589873 | biostudies-literature
| S-EPMC4104127 | biostudies-literature
| S-EPMC5923234 | biostudies-literature
| S-EPMC4259128 | biostudies-literature
| S-EPMC10395273 | biostudies-literature
| S-EPMC9377405 | biostudies-literature