Unknown

Dataset Information

0

Machine Learning Approach to Predict Ventricular Fibrillation Based on QRS Complex Shape.


ABSTRACT: Early prediction of the occurrence of ventricular tachyarrhythmia (VTA) has a potential to save patients' lives. VTA includes ventricular tachycardia (VT) and ventricular fibrillation (VF). Several studies have achieved promising performances in predicting VT and VF using traditional heart rate variability (HRV) features. However, as VTA is a life-threatening heart condition, its prediction performance requires further improvement. To improve the performance of predicting VF, we used the QRS complex shape features, and traditional HRV features were also used for comparison. We extracted features from 120-s-long HRV and electrocardiogram (ECG) signals (QRS complex signed area and R-peak amplitude) to predict the VF onset 30 s before its occurrence. Two artificial neural network (ANN) classifiers were trained and tested with two feature sets derived from HRV and the QRS complex shape based on a 10-fold cross-validation. The prediction accuracy estimated using 11 HRV features was 72%, while that estimated using four QRS complex shape features yielded a high prediction accuracy of 98.6%. The QRS complex shape could play a significant role in performance improvement of predicting the occurrence of VF. Thus, the results of our study can be considered by the researchers who are developing an application for an implantable cardiac defibrillator (ICD) when to begin ventricular defibrillation.

SUBMITTER: Taye GT 

PROVIDER: S-EPMC6764170 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine Learning Approach to Predict Ventricular Fibrillation Based on QRS Complex Shape.

Taye Getu Tadele GT   Shim Eun Bo EB   Hwang Han-Jeong HJ   Lim Ki Moo KM  

Frontiers in physiology 20190920


Early prediction of the occurrence of ventricular tachyarrhythmia (VTA) has a potential to save patients' lives. VTA includes ventricular tachycardia (VT) and ventricular fibrillation (VF). Several studies have achieved promising performances in predicting VT and VF using traditional heart rate variability (HRV) features. However, as VTA is a life-threatening heart condition, its prediction performance requires further improvement. To improve the performance of predicting VF, we used the QRS com  ...[more]

Similar Datasets

| S-EPMC9240063 | biostudies-literature
| S-EPMC4658146 | biostudies-literature
| S-EPMC10954972 | biostudies-literature
| S-EPMC9010416 | biostudies-literature
| S-EPMC6347213 | biostudies-other
| S-EPMC6920083 | biostudies-literature
2021-01-26 | GSE161019 | GEO
| S-EPMC7327028 | biostudies-literature
| S-EPMC6955342 | biostudies-literature
| S-EPMC10232270 | biostudies-literature