Unknown

Dataset Information

0

Optimal promising zone designs.


ABSTRACT: Clinical trials with adaptive sample size reassessment based on an unblinded analysis of interim results are perhaps the most popular class of adaptive designs (see Elsäßer et al., 2007). Such trials are typically designed by prespecifying a zone for the interim test statistic, termed the promising zone, along with a decision rule for increasing the sample size within that zone. Mehta and Pocock (2011) provided some examples of promising zone designs and discussed several procedures for controlling their type-1 error. They did not, however, address how to choose the promising zone or the corresponding sample size reassessment rule, and proposed instead that the operating characteristics of alternative promising zone designs could be compared by simulation. Jennison and Turnbull (2015) developed an approach based on maximizing expected utility whereby one could evaluate alternative promising zone designs relative to a gold-standard optimal design. In this paper, we show how, by eliciting a few preferences from the trial sponsor, one can construct promising zone designs that are both intuitive and achieve the Jennison and Turnbull (2015) gold-standard for optimality.

SUBMITTER: Hsiao ST 

PROVIDER: S-EPMC6767001 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optimal promising zone designs.

Hsiao Samuel T ST   Liu Lingyun L   Mehta Cyrus R CR  

Biometrical journal. Biometrische Zeitschrift 20181108 5


Clinical trials with adaptive sample size reassessment based on an unblinded analysis of interim results are perhaps the most popular class of adaptive designs (see Elsäßer et al., 2007). Such trials are typically designed by prespecifying a zone for the interim test statistic, termed the promising zone, along with a decision rule for increasing the sample size within that zone. Mehta and Pocock (2011) provided some examples of promising zone designs and discussed several procedures for controll  ...[more]

Similar Datasets

| S-EPMC2536725 | biostudies-literature
| S-EPMC7954143 | biostudies-literature
| S-EPMC6690170 | biostudies-literature
| S-EPMC9041718 | biostudies-literature
| S-EPMC5550375 | biostudies-literature
| S-EPMC5138118 | biostudies-literature
| S-EPMC5301254 | biostudies-literature
| S-EPMC5761082 | biostudies-literature
| S-EPMC4777673 | biostudies-literature
| S-EPMC3752677 | biostudies-literature