Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
Ontology highlight
ABSTRACT: Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context of engineering the intrahepatic biliary tree, an often-understudied topic in liver tissue engineering. Encapsulating biliary epithelial cells (cholangiocytes) within liver dECM has been shown to lead to the formation of complex biliary trees in vitro. By varying several aspects of the dECM structures' geometry, such as width and angle, we show that we can guide the directional formation of biliary trees. This is confirmed by computational 3D image analysis of duct alignment. This system also enables fabrication of a true multi-layer dECM structure and the formation of 3D biliary trees into which other cell types can be seeded. For example, we show that hepatocyte spheroids can be easily incorporated within this system, and that the seeding sequence influences the resulting structures after seven days in culture. STATEMENT OF SIGNIFICANCE: The field of liver tissue engineering has progressed significantly within the past several years, however engineering the intrahepatic biliary tree has remained a significant challenge. In this study, we utilize the inherent bioactivity of decellularized extracellular matrix (dECM) hydrogels and 3D-printing of a sacrificial biomaterial to create spatially defined, 3D biliary trees. The creation of patterned, 3D dECM hydrogels in the past has only been possible with additives to the gel that may stifle its bioactivity, or with rigid and permanent support structures that may present issues upon implantation. Additionally, the biological effect of 3D spatially patterned liver dECM has not been demonstrated independent of the effects of dECM bioactivity alone. This study demonstrates that sacrificial materials can be used to create pure, multi-layer dECM structures, and that strut width and angle can be changed to influence the formation and alignment of biliary trees encapsulated within. Furthermore, this strategy allows co-culture of other cells such as hepatocytes. We demonstrate that not only does this system show promise for tissue engineering the intrahepatic biliary tree, but it also aids in the study of duct formation and cell-cell interactions.
SUBMITTER: Lewis PL
PROVIDER: S-EPMC6768828 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA