Ontology highlight
ABSTRACT: Purpose
To systematically analyze intravoxel incoherent motion (IVIM) MRI in a perfusable capillary phantom closely matching the geometry of capillary beds in vivo and to compare the validity of the biexponential pseudo-diffusion and the recently introduced phase-distribution IVIM model.Methods
IVIM-MRI was performed at 12 different flow rates ( 0.2?2.4mL/min ) in a capillary phantom using 4 different DW-MRI sequences (2 with monopolar and 2 with flow-compensated diffusion-gradient schemes, with up to 16 b values between 0 and 800s/mm2 ). Resulting parameters from the assessed IVIM models were compared to results from optical microscopy.Results
The acquired data were best described by a static and a flowing compartment modeled by the phase-distribution approach. The estimated signal fraction f of the flowing compartment stayed approximately constant over the applied flow rates, with an average of f=0.451±0.023 in excellent agreement with optical microscopy ( f=0.454±0.002 ). The estimated average particle flow speeds v=0.25?2.7mm/s showed a highly significant linear correlation to the applied flow. The estimated capillary segment length of approximately 189um agreed well with optical microscopy measurements. Using the biexponential model, the signal fraction f was substantially underestimated and displayed a strong dependence on the applied flow rate.Conclusion
The constructed phantom facilitated the detailed investigation of IVIM-MRI methods. The results demonstrate that the phase-distribution method is capable of accurately characterizing fluid flow inside a capillary network. Parameters estimated using the biexponential model, specifically the perfusion fraction f , showed a substantial bias because the model assumptions were not met by the underlying flow pattern.
SUBMITTER: Schneider MJ
PROVIDER: S-EPMC6771596 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
Schneider Moritz Jörg MJ Gaass Thomas T Ricke Jens J Dinkel Julien J Dietrich Olaf O
Magnetic resonance in medicine 20190526 4
<h4>Purpose</h4>To systematically analyze intravoxel incoherent motion (IVIM) MRI in a perfusable capillary phantom closely matching the geometry of capillary beds in vivo and to compare the validity of the biexponential pseudo-diffusion and the recently introduced phase-distribution IVIM model.<h4>Methods</h4>IVIM-MRI was performed at 12 different flow rates ( 0.2⋯2.4mL/min ) in a capillary phantom using 4 different DW-MRI sequences (2 with monopolar and 2 with flow-compensated diffusion-gradie ...[more]