Ontology highlight
ABSTRACT: Background
The aim of this study was to investigate the influence of convolution kernel and iterative reconstruction on the diagnostic performance of radiomics and deep learning (DL) in lung adenocarcinomas.Methods
A total of 183 patients with 215 lung adenocarcinomas were included in this study. All CT imaging data was reconstructed with three reconstruction algorithms (ASiR at 0%, 30%, 60% strength), each with two convolution kernels (bone and standard). A total of 171 nodules were selected as the training-validation set, whereas 44 nodules were selected as the testing set. Logistic regression and a DL framework-DenseNets were selected to tackle the task. Three logical experiments were implemented to fully explore the influence of the studied parameters on the diagnostic performance. The receiver operating characteristic curve (ROC) was used to evaluate the performance of constructed models.Results
In Experiments A and B, no statistically significant results were found in the radiomic method, whereas two and six pairs were statistically significant (P?ConclusionThe results demonstrated that DL was more susceptible to CT parameter variability than radiomics. Standard convolution kernel images seem to be more appropriate for imaging analysis. Further investigation with a larger sample size is needed.
SUBMITTER: Zhao W
PROVIDER: S-EPMC6775016 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
Zhao Wei W Zhang Wei W Sun Yingli Y Ye Yuxiang Y Yang Jiancheng J Chen Wufei W Gao Pan P Li Jianying J Li Cheng C Jin Liang L Wang Peijun P Hua Yanqing Y Li Ming M
Thoracic cancer 20190819 10
<h4>Background</h4>The aim of this study was to investigate the influence of convolution kernel and iterative reconstruction on the diagnostic performance of radiomics and deep learning (DL) in lung adenocarcinomas.<h4>Methods</h4>A total of 183 patients with 215 lung adenocarcinomas were included in this study. All CT imaging data was reconstructed with three reconstruction algorithms (ASiR at 0%, 30%, 60% strength), each with two convolution kernels (bone and standard). A total of 171 nodules ...[more]