Project description:BACKGROUND:Right ventricular (RV) function is a major determinant of outcome in patients with pulmonary hypertension. Cardiac magnetic resonance (CMR) is gold standard to assess RV ejection fraction (RVEFCMR), however this is a crude measure. New CMR measures of RV function beyond RVEFCMR have emerged, such as RV lateral atrio-ventricular plane displacement (AVPDlat), maximum emptying velocity (S'CMR), RV fractional area change (FACCMR) and feature tracking of the RV free wall (FWSCMR). However, it is not fully elucidated if these CMR measures are in parity with the equivalent echocardiography-derived measurements: tricuspid annular plane systolic excursion (TAPSE), S'-wave velocity (S'echo), RV fractional area change (FACecho) and RV free wall strain (FWSecho). The aim of this study was to compare regional RV function parameters derived from CMR to their echocardiographic equivalents in patients with pulmonary hypertension and to RVEFCMR. METHODS:Fifty-five patients (37 women, 62?±?15?years) evaluated for pulmonary hypertension underwent CMR and echocardiography. AVPDlat, S'CMR, FACCMR and FWSCMR from cine 4-chamber views were compared to corresponding echocardiographic measures and to RVEFCMR delineated in cine short-axis stack. RESULTS:A strong correlation was demonstrated for FAC whereas the remaining measurements showed moderate correlation. The absolute bias for S' was 2.4?±?3.0?cm/s (relative bias 24.1?±?28.3%), TAPSE/AVPDlat 5.5?±?4.6?mm (33.2?±?25.2%), FWS 4.4?±?5.8% (20.2?±?37.5%) and for FAC 5.1?±?8.4% (18.5?±?32.5%). In correlation to RVEFCMR, FACCMR and FWSecho correlated strongly, FACecho, AVPDlat, FWSCMR and TAPSE moderately, whereas S' had only a weak correlation. CONCLUSION:This study has demonstrated a moderate to strong correlation of regional CMR measurements to corresponding echocardiographic measures. However, biases and to some extent wide limits of agreement, exist between the modalities. Consequently, the equivalent measures are not interchangeable at least in patients with pulmonary hypertension. The echocardiographic parameter that showed best correlation with RVEFCMR was FWSecho. At present, FACecho and FWSecho as well as RVEFCMR are the preferred methods to assess and follow up RV function in patients with pulmonary hypertension. Future investigations of the CMR right ventricular measures, beyond RVEF, are warranted.
Project description:AimsWe sought to identify metabolic pathways associated with right ventricular (RV) adaptation to pulmonary hypertension (PH). We evaluated candidate metabolites, previously associated with survival in pulmonary arterial hypertension, and used automated image segmentation and parametric mapping to model their relationship to adverse patterns of remodelling and wall stress.Methods and resultsIn 312 PH subjects (47.1% female, mean age 60.8 ± 15.9 years), of which 182 (50.5% female, mean age 58.6 ± 16.8 years) had metabolomics, we modelled the relationship between the RV phenotype, haemodynamic state, and metabolite levels. Atlas-based segmentation and co-registration of cardiac magnetic resonance imaging was used to create a quantitative 3D model of RV geometry and function-including maps of regional wall stress. Increasing mean pulmonary artery pressure was associated with hypertrophy of the basal free wall (β = 0.29) and reduced relative wall thickness (β = -0.38), indicative of eccentric remodelling. Wall stress was an independent predictor of all-cause mortality (hazard ratio = 1.27, P = 0.04). Six metabolites were significantly associated with elevated wall stress (β = 0.28-0.34) including increased levels of tRNA-specific modified nucleosides and fatty acid acylcarnitines, and decreased levels (β = -0.40) of sulfated androgen.ConclusionUsing computational image phenotyping, we identify metabolic profiles, reporting on energy metabolism and cellular stress-response, which are associated with adaptive RV mechanisms to PH.
Project description:Right ventricular (RV) dilatation predicts clinical worsening in pulmonary arterial hypertension (PAH) and RV volumes can be measured with high precision using cardiovascular magnetic resonance imaging. In regular follow-up of patients and in studies of improvement in RV function, knowledge of clinically significant changes of RV volumes and function are of relevance. Patients with PAH were followed with cardiovascular magnetic resonance imaging and clinical assessment at 6-month intervals. Changes in RV volumes associated with changes in clinical status were assessed. Twenty-five patients with PAH (Group 1) were included and examined every 6 months for 2.5 years, with a total of 107 MRI scans. For a step change in WHO functional class, the associated change in RV volume was 11% (confidence interval 7%-14%, p < 0.0001) and in stroke volume 9% (confidence interval 3%-15%, p = 0.003). This study found an 11% change in RV volume to be clinically significant. The combination of clinically significant changes and the known precision in the measurements enables individualized follow-up of RV-function in PAH. To our knowledge, this study is the first to use repeated assessments to suggest clinically significant changes of RV volume based on changes in clinical presentation.
Project description:BackgroundIn pulmonary arterial hypertension (PAH), progressive right ventricular (RV) dysfunction is believed to be largely secondary to RV ischaemia. A recent pilot study has demonstrated the feasibility of Oxygen-sensitive (OS) cardiovascular magnetic resonance (CMR) to detect in-vivo RV myocardial oxygenation. The aims of the present study therefore, were to assess the prevalence of RV myocardial ischaemia and relationship with RV myocardial interstitial changes in PAH patients with non-obstructive coronaries, and corelate with functional and haemodynamic parameters.MethodsWe prospectively recruited 42 patients with right heart catheter (RHC) proven PAH and 11 healthy age matched controls. The CMR examination involved standard functional imaging, OS-CMR imaging and native T1 mapping. An ΔOS-CMR signal intensity (SI) index (stress/rest signal intensity) was acquired at RV anterior, RV free-wall and RV inferior segments. T1 maps were acquired using Shortened Modified Look-Locker Inversion recovery (ShMOLLI) at the inferior RV segment.ResultsThe inferior RV ΔOS-CMR SI index was significantly lower in PAH patients compared with healthy controls (9.5 (- 7.4-42.8) vs 12.5 (9-24.6)%, p = 0.02). The inferior RV ΔOS-CMR SI had a significant correlation to RV inferior wall thickness (r = - 0.7, p < 0.001) and RHC mean pulmonary artery pressure (mPAP) (r = - 0.4, p = 0.02). Compared to healthy controls, patients with PAH had higher native T1 in the inferior RV wall: 1303 (1107-1612) vs 1232 (1159-1288)ms, p = 0.049. In addition, there was a significant difference in the inferior RV T1 values between the idiopathic PAH and systemic sclerosis associated PAH patients: 1242 (1107-1612) vs 1386 (1219-1552)ms, p = 0.007.ConclusionBlunted OS-CMR SI suggests the presence of in-vivo microvascular RV dysfunction in PAH patients. The native T1 in the inferior RV segments is significantly increased in the PAH patients, particularly among the systemic sclerosis associated PAH group.
Project description:Cardiac magnetic resonance imaging (CMRI) provides accurate information about right ventricular (RV) mass, RV volumes and other markers of RV function. CMRI is proving to be a particularly useful tool in pulmonary arterial hypertension (PAH), as measures of RV function have been shown to be prognostic of long-term outcomes in this disease. Changes in RV function can also provide important information about a patient's disease course and response to treatment. As CMRI is noninvasive it can be used to regularly monitor patients with PAH, which is an important advantage over invasive right heart catheterisation. This review will explore the use of CMRI in the context of existing monitoring tools for PAH and will explore the forthcoming developments that are likely to be important in the future monitoring of patients with PAH.
Project description:Neurohormonal overactivation plays an important role in pulmonary hypertension (PH). In this context, renal denervation, which aims to inhibit the neurohormonal systems, may be a promising adjunct therapy in PH. In this proof-of-concept study, we have demonstrated in 2 experimental models of PH that renal denervation delayed disease progression, reduced pulmonary vascular remodeling, lowered right ventricular afterload, and decreased right ventricular diastolic stiffness, most likely by suppression of the renin-angiotensin-aldosterone system.
Project description:There are limited data on the effects of anthracyclines on right ventricular (RV) structure, function, and tissue characteristics. The goal of this study was to investigate the effects of anthracyclines on the RV using cardiac magnetic resonance (CMR). This was a post-hoc analysis of a prospective study of 27 breast cancer (BC) patients (51.8 ± 8.9 years) using CMR prior, and up to 3-times after anthracyclines (240 mg/m2) to measure RV volumes and mass, RV extracellular volume (ECV) and cardiomyocyte mass (CM). Before anthracyclines, LVEF (69.4 ± 3.6%) and RVEF (55.6 ± 9%) were normal. The median follow-up after anthracyclines was 399 days (IQR 310-517). The RVEF reached its nadir (46.3 ± 6.8%) after 9-months (P < 0.001). RV mass-index and RV CM decreased to 13 ± 2.8 g/m2 and 8.13 ± 2 g/m2, respectively, at 16-months after anthracyclines. The RV ECV expanded from 0.26 ± 0.07 by 0.14 (53%) to 0.40 ± 0.1 (P < 0.001). The RV ECV expansion correlated with a decrease in RV mass-index (r = -0.46; P < 0.001) and the increase in CK-MB. An RV ESV index at baseline above its median predicted an increased risk of LV dysfunction post-anthracyclines. In BC patients treated with anthracyclines, RV atrophy, systolic dysfunction, and a parallel increase of diffuse interstitial fibrosis indicate a cardiotoxic response on a similar scale as previously seen in the systemic left ventricle.
Project description:Pulmonary hypertension (PH) is a progressive disease that leads to cardiopulmonary dysfunction and right heart failure from pressure and volume overloading of the right ventricle (RV). Mechanical cardiopulmonary support has theoretical promise as a bridge to organ transplant or destination therapy for these patients. Solving the challenges of mechanical cardiopulmonary support for PH and RV failure requires its testing in a physiologically relevant animal model. Previous PH models in large animals have used pulmonary bead embolization, which elicits unpredictable inflammatory responses and has a high mortality rate. We describe a step-by-step guide for inducing pulmonary hypertension and right ventricular hypertrophy (PH-RVH) in sheep by left pulmonary artery (LPA) ligation combined with progressive main pulmonary artery (MPA) banding. This approach provides a controlled method to regulate RV afterload as tolerated by the animal to achieve PH-RVH, while reducing acute mortality. This animal model can facilitate evaluation of mechanical support devices for PH and RV failure.
Project description:Cardiac magnetic resonance (CMR) imaging is used to assess the right ventricle (RV) of pulmonary hypertensive (PH) patients and more recently to track changes in response to therapy. We wished to investigate if repeat CMRs could be used to assess ventricular changes in the Sugen 5416 hypoxic (Su/Hx) rat model of PH treated with the dual endothelin receptor antagonist Macitentan. Male Sprague Dawley Su/Hx rats were dosed for 3 weeks with either vehicle or Macitentan (30 mg/kg) daily, control rats received only vehicle. All rats underwent three CMR scans; before treatment, 2 weeks into treatment, and end of the study. A separate group of Su/Hx and control rats, treated as above, underwent terminal hemodynamic measurements. Using terminal and CMR measurements, Macitentan was found to lower RV systolic pressure pulmonary artery remodeling and increase RV ejection fraction but not change RV hypertrophy (RVH). Repeat CMRs determined that Su/Hx rats treated with Macitentan had significantly reversed RVH via reducing RV mass as well as reducing elevated left ventricular eccentricity index; reductions in RV mass were also observed in Su/Hx vehicle rats exposed to normoxic conditions. We have demonstrated that repeat CMRs can be used to assess the volume and structural changes in the ventricles of the Su/Hx rat model. Using repeat CMRs has allowed us to build a more complete picture of the response of the RV and the left ventricle to treatment. It is unknown if these effects are a consequence of direct action on the RV or secondary to improvements in the lung vasculature.