Project description:Previous studies have demonstrated a female disadvantage in airway diseases, such as asthma and bronchiectasis. The basis for this sex disparity is unknown. We hypothesized that the female sex hormone, progesterone (P4), inhibits functions of the normal airway mucociliary apparatus. P4 receptor (PR) expression was evaluated in human lung and cultured primary human airway epithelial cells isolated from male and female lung transplant donors. PR expression was restricted to the proximal region of the cilia of airway epithelia, and was similar in men and women. Expression of isoform PR-B was more abundant than PR-A in cells from both sexes. Airway epithelial cell exposure to P4 decreased cilia beat frequency (CBF) by 42.3% (±7.2). Inhibition of CBF was prevented by coadministration of P4 with the active form of estrogen, 17β-estradiol, or the PR antagonist, mifepristone. P4 inhibition was time and dose dependent, with a significant decrease by 8 hours and maximal effect at 24 hours, accompanied by translocation of PR from the cilia to the nucleus. Inhibition of cilia beat was also prevented by treatment of cells with actinomycin D, suggesting that CBF inhibition is a transcriptionally mediated event. Together, these findings indicate that sex hormones influence the function of a key component of the mucociliary apparatus. These mechanisms may contribute to the sex disparity present in airway diseases and provide therapeutic targets for the treatment of these debilitating airway diseases.
Project description:Visualization of signal transduction in live primary cilia constitutes a technical challenge owing to the organelle's submicrometer dimensions and close proximity to the cell body. Using a genetically encoded calcium indicator targeted to primary cilia, we visualized calcium signaling in cilia of mouse fibroblasts and kidney cells upon chemical or mechanical stimulation with high specificity, high sensitivity and wide dynamic range.
Project description:Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only ∼200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.
Project description:Polycystic kidney disease (PKD) is a leading cause of end-stage renal disease. PKD arises from mutations in proteins, one a Ca2+-conducting channel, expressed in the primary cilia of renal epithelial cells. A common hypothesis is that Ca2+ entering through ciliary ion channels may reduce cystogenesis. The cilia have at least two Ca2+-conducting channels: polycystin-2 (PC2) and TRPV4 (transient receptor potential (TRP) cation channel, subfamily V, member 4), but how substantially they can increase intraciliary Ca2+ is unknown. By recording channel activities in isolated cilia, conditions are identified under which the channels can increase free Ca2+ within the cilium by at least 500-fold through regenerative (positive-feedback) signaling. Ca2+ that has entered through a channel can activate the channel internally, which increases the Ca2+ influx, and so on. Regenerative signaling is favored when the concentration of the Ca2+ buffer is reduced or when a slower buffer is used. Under such conditions, the Ca2+ that enters the cilium through a single PC2 channel is sufficient to almost fully activate that same channel. Regenerative signaling is not detectable with reduced external Ca2+. Reduced buffering also allows regenerative signaling through TRPV4 channels, but not through TRPM4 (TRP subfamily M, member 4) channels, which are activated by Ca2+ but do not conduct it. On a larger scale, Ca2+ that enters through TRPV4 channels can cause secondary activation of PC2 channels. I discuss the likelihood of regenerative ciliary Ca2+ signaling in vivo, a possible mechanism for its activation, and how it might relate to cystogenesis.
Project description:Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium. This Ca(2+)-responsive mechanosensor hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers. Here we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. We developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca(2+) influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signalling.
Project description:Ciliary beat frequency (CBF) measurements provide valuable information for diagnosing of primary ciliary dyskinesia (PCD). We developed a system for measuring CBF, used it in association with electron microscopy to diagnose PCD, and then analyzed characteristics of PCD patients. The CBF measurement system was based on power spectra measured through digital imaging. Twenty-four patients suspected of having PCD (age 1-19 yr) were selected from a group of 75 children and adolescents with pneumopathies of unknown causes. Ten healthy, nonsmoking volunteers (age ? 17 yr) served as a control group. Nasal brush samples were collected, and CBF and electron microscopy were performed. PCD was diagnosed in 12 patients: 5 had radial spoke defects, 3 showed absent central microtubule pairs with transposition, 2 had outer dynein arm defects, 1 had a shortened outer dynein arm, and 1 had a normal ultrastructure. Previous studies have reported that the most common cilia defects are in the dynein arm. As expected, the mean CBF was higher in the control group (P < 0.001) and patients with normal ultrastructure (P < 0.002), than in those diagnosed with cilia ultrastructural defects (i.e., PCD patients). An obstructive ventilatory pattern was observed in 70% of the PCD patients who underwent pulmonary function tests. All PCD patients presented bronchial wall thickening on chest computed tomography scans. The protocol and diagnostic techniques employed allowed us to diagnose PCD in 16% of patients in this study.
Project description:Sequential extraction analyses are widely used for the determination of element speciation in sediments and soils. Typical sequential extraction protocols were developed to extract from low-carbonate samples and therefore are not necessarily suitable for high-carbonate samples. In this study, we tested increased reagent to sample ratios to adjust an existing sequential extraction procedure to analyze high-CaCO3 samples with concentrations ranging from 70 to above 90 %. Complete dissolution of the CaCO3 phase, and a higher extraction efficiency of manganese associated with the carbonate phase, was achieved when using four times the original reagent to sample ratio in the 2nd extraction step. This increase of reagent did not compromise the extraction of subsequent phases as shown by unaffected Fe concentrations in a low-carbonate sample. Hence, an essential outcome was that increasing the solution to sample ratio did not lead to the dissolution of other sedimentary phases, such as hydrous and crystalline iron oxides or sulfides. Thus, compared to other extraction protocols that use a lower reagent to sample ratio in the carbonate dissolution step, the new protocol allowed the complete extraction of oxide and sulfide phases in the following extraction steps. Furthermore, the study demonstrated the benefit of replacing Na-acetate with NH4-acetate to extract exchangeable ions and carbonates. We observed increased intensities for several analytes, i.e., trace metals such as Mo and As, due to less suppression of the analyte signal by NH4-acetate than by Na-acetate during analysis by inductively coupled plasma optical emission spectrometry (ICP-OES).
Project description:SPAG6, an axoneme central apparatus protein, is essential for function of ependymal cell cilia and sperm flagella. A significant number of Spag6-deficient mice die with hydrocephalus, and surviving males are sterile because of sperm motility defects. In further exploring the ciliary dysfunction in Spag6-null mice, we discovered that cilia beat frequency was significantly reduced in tracheal epithelial cells, and that the beat was not synchronized. There was also a significant reduction in cilia density in both brain ependymal and trachea epithelial cells, and cilia arrays were disorganized. The orientation of basal feet, which determines the direction of axoneme orientation, was apparently random in Spag6-deficient mice, and there were reduced numbers of basal feet, consistent with reduced cilia density. The polarized epithelial cell morphology and distribution of intracellular mucin, ?-tubulin, and the planar cell polarity protein, Vangl2, were lost in Spag6-deficient tracheal epithelial cells. Polarized epithelial cell morphology and polarized distribution of ?-tubulin in tracheal epithelial cells was observed in one-week old wild-type mice, but not in the Spag6-deficient mice of the same age. Thus, the cilia and polarity defects appear prior to 7 days post-partum. These findings suggest that SPAG6 not only regulates cilia/flagellar motility, but that in its absence, ciliogenesis, axoneme orientation, and tracheal epithelial cell polarity are altered.
Project description:Ciliated airway epithelial cells are subject to sustained changes in intracellular CO(2)/HCO(3)(-) during exacerbations of airway diseases, but the role of CO(2)/HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) in ciliary beat regulation is unknown. We now show not only sAC expression in human airway epithelia (by RT-PCR, Western blotting, and immunofluorescence) but also its specific localization to the axoneme (Western blotting and immunofluorescence). Real time estimations of [cAMP] changes in ciliated cells, using FRET between fluorescently tagged PKA subunits (expressed under the foxj1 promoter solely in ciliated cells), revealed CO(2)/HCO(3)(-)-mediated cAMP production. This cAMP production was specifically blocked by sAC inhibitors but not by transmembrane adenylyl cyclase (tmAC) inhibitors. In addition, this cAMP production stimulated ciliary beat frequency (CBF) independently of intracellular pH because PKA and sAC inhibitors were uniquely able to block CO(2)/HCO(3)(-)-mediated changes in CBF (while tmAC inhibitors had no effect). Thus, sAC is localized to motile airway cilia and it contributes to the regulation of human airway CBF. In addition, CO(2)/HCO(3)(-) increases indeed reversibly stimulate intracellular cAMP production by sAC in intact cells.
Project description:BackgroundIn vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity.Principal findingsTo determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia.ConclusionsOn average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.