Unknown

Dataset Information

0

Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1.


ABSTRACT: Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA-binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from ongoing translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyperstress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.

SUBMITTER: Masser AE 

PROVIDER: S-EPMC6779467 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1  ...[more]

Similar Datasets

| S-EPMC5084276 | biostudies-literature
| S-EPMC10551698 | biostudies-literature
| S-EPMC2266631 | biostudies-literature
2023-05-16 | GSE232311 | GEO
| S-EPMC3793395 | biostudies-literature
| S-EPMC3504668 | biostudies-literature
| S-EPMC5083669 | biostudies-literature
| S-EPMC3330701 | biostudies-literature
| S-EPMC8582437 | biostudies-literature
| S-EPMC2173022 | biostudies-literature