Neuronal interleukin-16 (NIL-16): a dual function PDZ domain protein.
Ontology highlight
ABSTRACT: Interleukin (IL)-16 is a proinflammatory cytokine that has attracted widespread attention because of its ability to block HIV replication. We describe the identification and characterization of a large neuronal IL-16 precursor, NIL-16. The N-terminal half of NIL-16 constitutes a novel PDZ domain protein sequence, whereas the C terminus is identical with splenocyte-derived mouse pro-IL-16. IL-16 has been characterized only in the immune system, and the identification of NIL-16 marks a previously unsuspected connection between the immune and the nervous systems. NIL-16 is a cytosolic protein that is detected only in neurons of the cerebellum and the hippocampus. The N-terminal portion of NIL-16 interacts selectively with a variety of neuronal ion channels, which is similar to the function of many other PDZ domain proteins that serve as intracellular scaffolding proteins. Among the NIL-16-interacting proteins is the class C alpha1 subunit of a mouse brain calcium channel (mbC alpha1). The C terminus of NIL-16 can be processed by caspase-3, resulting in the release of secreted IL-16. Furthermore, in cultured cerebellar granule neurons undergoing apoptosis, NIL-16 proteolysis parallels caspase-3 activation. Cerebellar granule neurons express the IL-16 receptor CD4. Exposure of these cells to IL-16 induces expression of the immediate-early gene, c-fos, via a signaling pathway that involves tyrosine phosphorylation. This suggests that IL-16 provides an autocrine function in the brain. Therefore, we hypothesize that NIL-16 is a dual function protein in the nervous system that serves as a secreted signaling molecule as well as a scaffolding protein.
SUBMITTER: Kurschner C
PROVIDER: S-EPMC6782450 | biostudies-literature | 1999 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA