Unknown

Dataset Information

0

Topology, landscapes, and biomolecular energy transport.


ABSTRACT: While ubiquitous, energy redistribution remains a poorly understood facet of the nonequilibrium thermodynamics of biomolecules. At the molecular level, finite-size effects, pronounced nonlinearities, and ballistic processes produce behavior that diverges from the macroscale. Here, we show that transient thermal transport reflects macromolecular energy landscape architecture through the topological characteristics of molecular contacts and the nonlinear processes that mediate dynamics. While the former determines transport pathways via pairwise interactions, the latter reflects frustration within the landscape for local conformational rearrangements. Unlike transport through small-molecule systems, such as alkanes, nonlinearity dominates over coherent processes at even quite short time- and length-scales. Our exhaustive all-atom simulations and novel local-in-time and space analysis, applicable to both theory and experiment, permit dissection of energy migration in biomolecules. The approach demonstrates that vibrational energy transport can probe otherwise inaccessible aspects of macromolecular dynamics and interactions that underly biological function.

SUBMITTER: Elenewski JE 

PROVIDER: S-EPMC6789131 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Topology, landscapes, and biomolecular energy transport.

Elenewski Justin E JE   Velizhanin Kirill A KA   Zwolak Michael M  

Nature communications 20191011 1


While ubiquitous, energy redistribution remains a poorly understood facet of the nonequilibrium thermodynamics of biomolecules. At the molecular level, finite-size effects, pronounced nonlinearities, and ballistic processes produce behavior that diverges from the macroscale. Here, we show that transient thermal transport reflects macromolecular energy landscape architecture through the topological characteristics of molecular contacts and the nonlinear processes that mediate dynamics. While the  ...[more]

Similar Datasets

| S-EPMC3695400 | biostudies-literature
| S-EPMC4434716 | biostudies-literature
| S-EPMC10019486 | biostudies-literature
| S-EPMC9366796 | biostudies-literature
| S-EPMC2366061 | biostudies-literature
| S-EPMC3125785 | biostudies-literature
| S-EPMC4441119 | biostudies-literature
| S-EPMC4037317 | biostudies-literature
| S-EPMC5744871 | biostudies-literature
| S-EPMC5493942 | biostudies-literature