Unknown

Dataset Information

0

Functional analysis of the C2A domain of synaptotagmin 1: implications for calcium-regulated secretion.


ABSTRACT: Synaptotagmin 1 is proposed to function as a low affinity calcium sensor for calcium-triggered exocytosis from neural and neuroendocrine cells. Because of the calcium-binding properties of the C2A domain of synaptotagmin 1, calcium-dependent interactions through this domain may modulate neurotransmitter release. We addressed this question by using alanine-scanning mutagenesis to generate a series of mutations within the C2A domain of synaptotagmin 1. The effects of these mutations on synaptotagmin 1 C2A function were analyzed for (1) calcium-dependent phospholipid binding, (2) calcium-dependent binding to syntaxin 1A, a plasma membrane protein critical for vesicle docking or fusion, and (3) calcium-regulated secretion after microinjection into neuroendocrine pheochromocytoma (PC12) cells. Our analyses reveal that a polylysine motif at residues 189-192 confers an inhibitory effect on secretion by recombinant synaptotagmin C2A fragments. The synaptotagmin 1 C2A polylysine motif functions independently of calcium-mediated interactions with phospholipids and syntaxin 1A. Furthermore, alpha-latrotoxin reverses the inhibitory effect of injected recombinant C2A fragments, suggesting that they perturb the cellular calcium-sensing machinery by interfering with synaptotagmin 1 activity in vivo. Our results indicate that novel calcium-independent interactions mediated through the C2A polylysine motif of synaptotagmin 1 function to modulate neurotransmitter release.

SUBMITTER: Thomas DM 

PROVIDER: S-EPMC6793152 | biostudies-literature | 1998 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional analysis of the C2A domain of synaptotagmin 1: implications for calcium-regulated secretion.

Thomas D M DM   Elferink L A LA  

The Journal of neuroscience : the official journal of the Society for Neuroscience 19980501 10


Synaptotagmin 1 is proposed to function as a low affinity calcium sensor for calcium-triggered exocytosis from neural and neuroendocrine cells. Because of the calcium-binding properties of the C2A domain of synaptotagmin 1, calcium-dependent interactions through this domain may modulate neurotransmitter release. We addressed this question by using alanine-scanning mutagenesis to generate a series of mutations within the C2A domain of synaptotagmin 1. The effects of these mutations on synaptotagm  ...[more]

Similar Datasets

| S-EPMC1222805 | biostudies-other
| S-EPMC3400769 | biostudies-other
| S-EPMC7857503 | biostudies-literature
| S-EPMC7006929 | biostudies-literature
| S-EPMC7224543 | biostudies-literature
| S-EPMC7581758 | biostudies-literature
| S-EPMC1218336 | biostudies-other
| S-EPMC3212454 | biostudies-literature
| S-EPMC6094142 | biostudies-literature
| S-EPMC3494482 | biostudies-literature