Ontology highlight
ABSTRACT: Background
The objective of the current study was to study the molecular mechanism(s) underlying cardiac troponin I autoantibody (cTnIAAb) binding to cardiomyocyte and resultant myocardial damage/dysfunction.Methods
cTnIAAb was purified from serum of 10 acute myocardial infarction (AMI) patients with left ventricular remodeling. Recombinant human cTnI was used to generate three mouse-derived monoclonal anti-cTnI antibodies (cTnImAb1, cTnImAb2, and cTnImAb3). The target proteins in cardiac myocyte membrane bound to cTnImAb and effect of cTnIAAb and cTnImAb on apoptosis and myocardial function were determined.Findings
We found that cTnIAAb/cTnImAb1 directly bound to the cardiomyocyte membrane?-Enolase (ENO1) and triggered cell apoptosis via increased expression of ENO1 and Bax, decreased expression of Bcl2, subsequently activating Caspase8, Caspase 3, phosphatase and tensin homolog (PTEN) while inhibiting Akt activity. This cTnIAAb-ENO1-PTEN-Akt signaling axis contributed to increased myocardial apoptosis, myocardial collagen deposition, and impaired systolic dysfunction.Interpretation
Results obtained in this study indicate that cTnIAAb is involved in the process of ventricular remodeling after myocardial injury. FUND: The National Natural Science Foundation of China (Grant#: 81260026).
SUBMITTER: Wu Y
PROVIDER: S-EPMC6796505 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
Wu Yu Y Qin Yang-Hua YH Liu Yang Y Zhu Li L Zhao Xian-Xian XX Liu Yao-Yang YY Luo Shi-Wen SW Tang Gu-Sheng GS Shen Qian Q
EBioMedicine 20190829
<h4>Background</h4>The objective of the current study was to study the molecular mechanism(s) underlying cardiac troponin I autoantibody (cTnIAAb) binding to cardiomyocyte and resultant myocardial damage/dysfunction.<h4>Methods</h4>cTnIAAb was purified from serum of 10 acute myocardial infarction (AMI) patients with left ventricular remodeling. Recombinant human cTnI was used to generate three mouse-derived monoclonal anti-cTnI antibodies (cTnImAb1, cTnImAb2, and cTnImAb3). The target proteins i ...[more]