Unknown

Dataset Information

0

A triple drug combination targeting components of the nutrient-sensing network maximizes longevity.


ABSTRACT: Increasing life expectancy is causing the prevalence of age-related diseases to rise, and there is an urgent need for new strategies to improve health at older ages. Reduced activity of insulin/insulin-like growth factor signaling (IIS) and mechanistic target of rapamycin (mTOR) nutrient-sensing signaling network can extend lifespan and improve health during aging in diverse organisms. However, the extensive feedback in this network and adverse side effects of inhibition imply that simultaneous targeting of specific effectors in the network may most effectively combat the effects of aging. We show that the mitogen-activated protein kinase kinase (MEK) inhibitor trametinib, the mTOR complex 1 (mTORC1) inhibitor rapamycin, and the glycogen synthase kinase-3 (GSK-3) inhibitor lithium act additively to increase longevity in Drosophila Remarkably, the triple drug combination increased lifespan by 48%. Furthermore, the combination of lithium with rapamycin cancelled the latter's effects on lipid metabolism. In conclusion, a polypharmacology approach of combining established, prolongevity drug inhibitors of specific nodes may be the most effective way to target the nutrient-sensing network to improve late-life health.

SUBMITTER: Castillo-Quan JI 

PROVIDER: S-EPMC6800352 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

A triple drug combination targeting components of the nutrient-sensing network maximizes longevity.

Castillo-Quan Jorge Iván JI   Tain Luke S LS   Kinghorn Kerri J KJ   Li Li L   Grönke Sebastian S   Hinze Yvonne Y   Blackwell T Keith TK   Bjedov Ivana I   Partridge Linda L  

Proceedings of the National Academy of Sciences of the United States of America 20190930 42


Increasing life expectancy is causing the prevalence of age-related diseases to rise, and there is an urgent need for new strategies to improve health at older ages. Reduced activity of insulin/insulin-like growth factor signaling (IIS) and mechanistic target of rapamycin (mTOR) nutrient-sensing signaling network can extend lifespan and improve health during aging in diverse organisms. However, the extensive feedback in this network and adverse side effects of inhibition imply that simultaneous  ...[more]

Similar Datasets

| S-EPMC8430347 | biostudies-literature
| S-EPMC10387089 | biostudies-literature
| S-EPMC6359923 | biostudies-literature
| S-EPMC5116515 | biostudies-literature
| S-EPMC8293681 | biostudies-literature
2017-09-25 | GSE95681 | GEO
2017-09-23 | E-MTAB-6056 | biostudies-arrayexpress
| S-EPMC5642704 | biostudies-literature
| S-EPMC10319549 | biostudies-literature
| S-EPMC7565337 | biostudies-literature