Unknown

Dataset Information

0

Active DNA Demethylation in Plants.


ABSTRACT: Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.

SUBMITTER: Parrilla-Doblas JT 

PROVIDER: S-EPMC6801703 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Active DNA Demethylation in Plants.

Parrilla-Doblas Jara Teresa JT   Roldán-Arjona Teresa T   Ariza Rafael R RR   Córdoba-Cañero Dolores D  

International journal of molecular sciences 20190921 19


Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous prote  ...[more]

Similar Datasets

| S-EPMC3711520 | biostudies-literature
2022-12-19 | GSE143436 | GEO
2016-01-27 | PXD001164 | Pride
| S-EPMC3278721 | biostudies-literature
| S-EPMC3575687 | biostudies-literature
| S-EPMC7319731 | biostudies-literature
| S-EPMC3863514 | biostudies-literature
| S-EPMC5381148 | biostudies-literature
| S-EPMC1544249 | biostudies-literature
| S-EPMC5912259 | biostudies-literature