Unknown

Dataset Information

0

Range of motion in the avian wing is strongly associated with flight behavior and body mass.


ABSTRACT: Avian wing shape is highly variable across species but only coarsely associated with flight behavior, performance, and body mass. An underexplored but potentially explanatory feature is the ability of birds to actively change wing shape to meet aerodynamic and behavioral demands. Across 61 species, we found strong associations with flight behavior and mass for range of motion traits but not wing shape and strikingly different associations for different aspects of motion capability. Further, static morphology exhibits high phylogenetic signal, whereas range of motion shows greater evolutionary lability. These results suggest a new framework for understanding the evolution of avian flight: Rather than wing morphology, it is range of motion, an emergent property of morphology, that is predominantly reshaped as flight strategy and body size evolve.

SUBMITTER: Baliga VB 

PROVIDER: S-EPMC6810231 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Range of motion in the avian wing is strongly associated with flight behavior and body mass.

Baliga V B VB   Szabo I I   Altshuler D L DL  

Science advances 20191023 10


Avian wing shape is highly variable across species but only coarsely associated with flight behavior, performance, and body mass. An underexplored but potentially explanatory feature is the ability of birds to actively change wing shape to meet aerodynamic and behavioral demands. Across 61 species, we found strong associations with flight behavior and mass for range of motion traits but not wing shape and strikingly different associations for different aspects of motion capability. Further, stat  ...[more]

Similar Datasets

| S-EPMC3233598 | biostudies-literature
| S-EPMC8742909 | biostudies-literature
| S-EPMC5069069 | biostudies-literature
| S-EPMC5496668 | biostudies-literature