Unknown

Dataset Information

0

3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering.


ABSTRACT: 3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP did not significantly affect alkaline phosphatase (ALP) activity and expression, but significantly upregulated the gene expression levels of late osteogenic markers. This study demonstrated that the 3D printing of silk fibroin-based hybrid scaffolds, in combination with PRP post-treatment, might be a more efficient strategy to promote osteogenic differentiation of adult stem cells and has significant potential to be used for bone tissue engineering.

SUBMITTER: Wei L 

PROVIDER: S-EPMC6812411 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering.

Wei Liang L   Wu Shaohua S   Kuss Mitchell M   Jiang Xiping X   Sun Runjun R   Reid Patrick P   Qin Xiaohong X   Duan Bin B  

Bioactive materials 20190925


3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate  ...[more]

Similar Datasets

| S-EPMC5899947 | biostudies-literature
| S-EPMC6894137 | biostudies-literature
| S-EPMC5172375 | biostudies-literature
| S-EPMC10956317 | biostudies-literature
| S-EPMC5915392 | biostudies-other
| S-EPMC6250097 | biostudies-literature
| S-EPMC7656266 | biostudies-literature
| S-EPMC10837071 | biostudies-literature
| S-EPMC6164798 | biostudies-other
| S-EPMC7509194 | biostudies-literature