Unknown

Dataset Information

0

Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus.


ABSTRACT: BACKGROUND:Secondary metabolites play an important role in the plant defensive response. They are produced as a defence mechanism against biotic stress by providing plants with antimicrobial and antioxidant weapons. In higher plants, the majority of secondary metabolites accumulate as glycoconjugates. Glycosylation is one of the commonest modifications of secondary metabolites, and is carried out by enzymes called glycosyltransferases. RESULTS:Here we provide evidence that the previously described tomato wound and pathogen-induced glycosyltransferase Twi1 displays in vitro activity toward the coumarins scopoletin, umbelliferone and esculetin, and the flavonoids quercetin and kaempferol, by uncovering a new role of this gene in plant glycosylation. To test its activity in vivo, Twi1-silenced transgenic tomato plants were generated and infected with Tomato spotted wilt virus. The Twi1-silenced plants showed a differential accumulation of Twi1 substrates and enhanced susceptibility to the virus. CONCLUSIONS:Biochemical in vitro assays and transgenic plants generation proved to be useful strategies to assign a role of tomato Twi1 in the plant defence response. Twi1 glycosyltransferase showed to regulate quercetin and kaempferol levels in tomato plants, affecting plant resistance to viral infection.

SUBMITTER: Campos L 

PROVIDER: S-EPMC6815406 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus.

Campos Laura L   López-Gresa María Pilar MP   Fuertes Diana D   Bellés José María JM   Rodrigo Ismael I   Lisón Purificación P  

BMC plant biology 20191026 1


<h4>Background</h4>Secondary metabolites play an important role in the plant defensive response. They are produced as a defence mechanism against biotic stress by providing plants with antimicrobial and antioxidant weapons. In higher plants, the majority of secondary metabolites accumulate as glycoconjugates. Glycosylation is one of the commonest modifications of secondary metabolites, and is carried out by enzymes called glycosyltransferases.<h4>Results</h4>Here we provide evidence that the pre  ...[more]

Similar Datasets

| S-EPMC2440563 | biostudies-literature
| S-EPMC4819612 | biostudies-literature
| S-EPMC6609724 | biostudies-literature
| S-EPMC6197993 | biostudies-literature
| S-EPMC3163058 | biostudies-literature
| S-EPMC7887705 | biostudies-literature
| S-EPMC7503680 | biostudies-literature
| S-EPMC2651457 | biostudies-literature
| S-EPMC4499934 | biostudies-literature
| S-EPMC3488837 | biostudies-literature