Alternatively spliced down syndrome cell adhesion molecule (Dscam) controls innate immunity in crab.
Ontology highlight
ABSTRACT: Alternatively-spliced hypervariable immunoglobulin domain-encoding molecules, called Down syndrome cell adhesion molecule (Dscam), have been widely detected as components of the arthropod immune system. Although its ability to specifically bind pathogens and enable phagocytosis of bacteria has been elucidated, the signal transduction mechanisms or effectors that activate post-Dscam-binding pathogens remain poorly characterized. Here, we reveal the alternative splicing exons of Dscam's cytoplasmic tail and its isoforms in the hemocytes of crab (Eriocheir sinensis), showing that the expression of Dscam was acutely induced after an immune challenge, which suggested its functioning for innate immunity. Significantly decreased expression levels of antimicrobial molecular peptides (AMPs) were detected in Dscam-silenced crab hemocytes in vitro, which coincided with their vulnerability to infection by Staphylococcus aureus and higher bacterial concentrations occurring in Dscam-silenced crabs in vivo Further experimental investigation demonstrated that Dscam-regulated AMP expression via the Src homology (SH)3-binding domain in the first constant exon translated protein of the cytoplasmic tail bound with the SH3 domain of the Dock, an SH3/SH2 adaptor protein required for axon guidance. Dock promoted extracellular signal-regulated kinase (ERK) phosphorylation via indirect binding and then regulated dorsal phosphorylation and translocation from the cytoplasm to the nucleus, subsequently promoting AMP expression for the effective removal of bacteria. To the best of our knowledge, this comprehensive study is the first to highlight the critical role of the alternatively-spliced Dscam cytoplasmic tail in antimicrobial control activity. It also suggests possible cross-talk occurring between Dscam and other pattern recognition receptors.
SUBMITTER: Li D
PROVIDER: S-EPMC6827295 | biostudies-literature | 2019 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA