Unknown

Dataset Information

0

Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared spectroscopy data.


ABSTRACT: Cod liver oil is a popular dietary supplement marketed as a rich source of omega-3 fatty acids as well as vitamins A and D. Due to its high market price, cod liver oil is vulnerable to adulteration with lower priced vegetable oils. In this study, 1H and 13C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography (coupled to a flame ionization detector) were used in combination with multivariate statistics to determine cod liver oil adulteration with common vegetable oils (sunflower and canola oils). Artificial neural networks (ANN) were able to differentiate adulteration levels based on infrared spectra with a detection limit of 0.22% and a root mean square error of prediction (RMSEP) of 0.86%. ANN models using 1H NMR and 13C NMR data yielded detection limits of 3.0% and 1.8% and RMSEPs of 2.7% and 1.1%, respectively. In comparison, the ANN model based on fatty acid profiles determined by gas chromatography achieved a detection limit of 0.81% and an RMSEP of 1.1%. The approach of using spectroscopic techniques in combination with multivariate statistics can be regarded as a promising tool for the authentication of cod liver oil and may pave the way for a holistic quality assessment of fish oils. Graphical abstract.

SUBMITTER: Giese E 

PROVIDER: S-EPMC6834736 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemometric tools for the authentication of cod liver oil based on nuclear magnetic resonance and infrared spectroscopy data.

Giese Editha E   Rohn Sascha S   Fritsche Jan J  

Analytical and bioanalytical chemistry 20190810 26


Cod liver oil is a popular dietary supplement marketed as a rich source of omega-3 fatty acids as well as vitamins A and D. Due to its high market price, cod liver oil is vulnerable to adulteration with lower priced vegetable oils. In this study, <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography (coupled to a flame ionization detector) were used in combination with multivariate statistics to determine cod liv  ...[more]

Similar Datasets

| S-EPMC5575056 | biostudies-literature
| S-EPMC3323964 | biostudies-literature
| S-EPMC4143926 | biostudies-literature
2023-11-03 | GSE239379 | GEO
| S-EPMC6225283 | biostudies-literature
| S-EPMC3820370 | biostudies-literature
| S-EPMC5915746 | biostudies-literature
| S-EPMC5543112 | biostudies-literature
| S-EPMC4969755 | biostudies-literature
| S-EPMC1185246 | biostudies-other