Unknown

Dataset Information

0

Pathological pain processing in mouse models of multiple sclerosis and spinal cord injury: contribution of plasma membrane calcium ATPase 2 (PMCA2).


ABSTRACT: BACKGROUND:Neuropathic pain is often observed in individuals with multiple sclerosis (MS) and spinal cord injury (SCI) and is not adequately alleviated by current pharmacotherapies. A better understanding of underlying mechanisms could facilitate the discovery of novel targets for therapeutic interventions. We previously reported that decreased plasma membrane calcium ATPase 2 (PMCA2) expression in the dorsal horn (DH) of healthy PMCA2+/- mice is paralleled by increased sensitivity to evoked nociceptive pain. These studies suggested that PMCA2, a calcium extrusion pump expressed in spinal cord neurons, plays a role in pain mechanisms. However, the contribution of PMCA2 to neuropathic pain processing remains undefined. The present studies investigated the role of PMCA2 in neuropathic pain processing in the DH of wild-type mice affected by experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and following SCI. METHODS:EAE was induced in female and male C57Bl/6N mice via inoculation with myelin oligodendrocyte glycoprotein fragment 35-55 (MOG35-55) emulsified in Complete Freund's Adjuvant (CFA). CFA-inoculated mice were used as controls. A severe SC contusion injury was induced at thoracic (T8) level in female C57Bl/6N mice. Pain was evaluated by the Hargreaves and von Frey filament tests. PMCA2 levels in the lumbar DH were analyzed by Western blotting. The effectors that decrease PMCA2 expression were identified in SC neuronal cultures. RESULTS:Increased pain in EAE and SCI was paralleled by a significant decrease in PMCA2 levels in the DH. In contrast, PMCA2 levels remained unaltered in the DH of mice with EAE that manifested motor deficits but not increased pain. Interleukin-1? (IL-1?), tumor necrosis factor ? (TNF?), and IL-6 expression were robustly increased in the DH of mice with EAE manifesting pain, whereas these cytokines showed a modest increase or no change in mice with EAE in the absence of pain. Only IL-1? decreased PMCA2 levels in pure SC neuronal cultures through direct actions. CONCLUSIONS:PMCA2 is a contributor to neuropathic pain mechanisms in the DH. A decrease in PMCA2 in DH neurons is paralleled by increased pain sensitivity, most likely through perturbations in calcium signaling. Interleukin-1? is one of the effectors that downregulates PMCA2 by acting directly on neurons.

SUBMITTER: Mirabelli E 

PROVIDER: S-EPMC6839084 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pathological pain processing in mouse models of multiple sclerosis and spinal cord injury: contribution of plasma membrane calcium ATPase 2 (PMCA2).

Mirabelli Ersilia E   Ni Li L   Li Lun L   Acioglu Cigdem C   Heary Robert F RF   Elkabes Stella S  

Journal of neuroinflammation 20191108 1


<h4>Background</h4>Neuropathic pain is often observed in individuals with multiple sclerosis (MS) and spinal cord injury (SCI) and is not adequately alleviated by current pharmacotherapies. A better understanding of underlying mechanisms could facilitate the discovery of novel targets for therapeutic interventions. We previously reported that decreased plasma membrane calcium ATPase 2 (PMCA2) expression in the dorsal horn (DH) of healthy PMCA2<sup>+/-</sup> mice is paralleled by increased sensit  ...[more]

Similar Datasets

| S-EPMC2896328 | biostudies-literature
| S-EPMC6250714 | biostudies-literature
| S-EPMC3039050 | biostudies-literature
| S-EPMC6174086 | biostudies-literature
| S-EPMC4857793 | biostudies-literature
| S-EPMC6540403 | biostudies-literature
| S-EPMC3899784 | biostudies-literature
2013-12-13 | E-MTAB-1416 | biostudies-arrayexpress
| S-EPMC6996964 | biostudies-literature
| S-EPMC4718109 | biostudies-other