Project description:Understanding the short and long-term pulmonary and neurologic outcomes of neonates with bronchopulmonary dysplasia (BPD) is important in neonatal care for low-birth-weight infants. Different criteria for BPD may have different associations with long-term outcomes. Currently, two criteria for diagnosing BPD have been proposed by the NIH (2001) and NRN (2019) for preterm infants at a postmenstrual age (PMA) of 36 weeks. We investigated which BPD definition best predicts long-term outcomes. Korean nationwide data for preterm infants born between 24+0 and < 32+0 weeks gestation from January 2013 to December 2015 were collected. For long-term outcomes, severity based on the NRN criteria was significantly related to neurodevelopmental impairment (NDI) in a univariate analysis after other risk factors were controlled. For the admission rate for respiratory disorder, grade 3 BPD of the NRN criteria had the highest specificity (96%), negative predictive value (86%), and accuracy (83%). For predicting NDI at the 18-24 month follow-up, grade 3 BPD of the NRN criteria had the best specificity (98%), positive (64%) and negative (79%) predictive values, and accuracy (78%) while NIH severe BPD had the highest sensitivity (60%). The NRN definition was more strongly associated with poor 2-year developmental outcomes. BPD diagnosed by NRN definitions might better identify infants at high risk for NDI.
Project description:BackgroundLow anterior resection syndrome is pragmatically defined as disordered bowel function after rectal resection leading to a detriment in quality of life. This broad characterization does not allow for precise estimates of prevalence. The low anterior resection syndrome score was designed as a simple tool for clinical evaluation of low anterior resection syndrome. Although the low anterior resection syndrome score has good clinical utility, it may not capture all important aspects that patients may experience.ObjectiveThe aim of this collaboration was to develop an international consensus definition of low anterior resection syndrome that encompasses all aspects of the condition and is informed by all stakeholders.DesignThis international patient-provider initiative used an online Delphi survey, regional patient consultation meetings, and an international consensus meeting.ParticipantsThree expert groups participated: patients, surgeons, and other health professionals from 5 regions (Australasia, Denmark, Spain, Great Britain and Ireland, and North America) and in 3 languages (English, Spanish, and Danish).Main outcome measureThe primary outcome measured was the priorities for the definition of low anterior resection syndrome.ResultsThree hundred twenty-five participants (156 patients) registered. The response rates for successive rounds of the Delphi survey were 86%, 96%, and 99%. Eighteen priorities emerged from the Delphi survey. Patient consultation and consensus meetings refined these priorities to 8 symptoms and 8 consequences that capture essential aspects of the syndrome.LimitationsSampling bias may have been present, in particular, in the patient panel because social media was used extensively in recruitment. There was also dominance of the surgical panel at the final consensus meeting despite attempts to mitigate this.ConclusionsThis is the first definition of low anterior resection syndrome developed with direct input from a large international patient panel. The involvement of patients in all phases has ensured that the definition presented encompasses the vital aspects of the patient experience of low anterior resection syndrome. The novel separation of symptoms and consequences may enable greater sensitivity to detect changes in low anterior resection syndrome over time and with intervention.
Project description:ObjectiveTo quantify and compare levels of potential biomarkers in neonates with (i) Bronchopulmonary dysplasia (BPD); (ii) BPD-associated pulmonary hypertension (BPD-PH); (iii) PH without BPD; and (iv) neonates without lung disease at ~36 weeks postmenstrual age.Study designMultiple potential biomarkers were measured in plasma samples of 90 patients using a multi-spot enzyme-linked immunosorbent assay. Statistical tests done included one-way ANOVA to compare levels of biomarkers between different groups.ResultsHigher levels of ICAM-1 were present in infants with BPD and correlated with its severity. Infants with BPD have significantly higher levels of ANG-2 and lower levels of ANG-1. Infants with PH have higher levels of: IL-6, IL-8, IL-10, and TNF-α. Infants with BPD-PH have significantly lower levels of MCP-1 and higher levels of IL-1β than infants with PH without BPD.ConclusionICAM-1 may be used as a specific biomarker for diagnosis of BPD and its severity.
Project description:PurposeKnown clinical and genetic markers have limitations in predicting disease course and outcome in juvenile myelomonocytic leukemia (JMML). DNA methylation patterns in JMML have correlated with outcome across multiple studies, suggesting it as a biomarker to improve patient stratification. However, standardized approaches to classify JMML on the basis of DNA methylation patterns are lacking. We, therefore, sought to define an international consensus for DNA methylation subgroups in JMML and develop classification methods for clinical implementation.Experimental designPublished DNA methylation data from 255 patients with JMML were used to develop and internally validate a classifier model. Accuracy across platforms (EPIC-arrays and MethylSeq) was tested using a technical validation cohort (32 patients). The suitability of both methods for single-patient classification was demonstrated using an independent cohort (47 patients).ResultsAnalysis of pooled, published data established three DNA methylation subgroups as a de facto standard. Unfavorable prognostic parameters (PTPN11 mutation, elevated fetal hemoglobin, and older age) were significantly enriched in the high methylation (HM) subgroup. A classifier was then developed that predicted subgroups with 98% accuracy across different technological platforms. Applying the classifier to an independent validation cohort confirmed an association of HM with secondary mutations, high relapse incidence, and inferior overall survival (OS), while the low methylation subgroup was associated with a favorable disease course. Multivariable analysis established DNA methylation subgroups as the only significant factor predicting OS.ConclusionsThis study provides an international consensus definition for DNA methylation subgroups in JMML. We developed and validated methods which will facilitate the design of risk-stratified clinical trials in JMML.
Project description:The objective of this study is to review the candidate gene and genome-wide association studies relevant to bronchopulmonary dysplasia, and to discuss the emerging understanding of the complexities involved in genetic predisposition to bronchopulmonary dysplasia and its outcomes. Genetic factors contribute much of the variance in risk for BPD. Studies to date evaluating single or a few candidate genes have not been successful in yielding results that are replicated in GWAS, perhaps due to more stringent p-value thresholds. GWAS studies have identified only a single gene (SPOCK2) at genome-wide significance in a European White and African cohort, which was not replicated in two North American studies. Pathway gene-set analysis in a North American cohort confirmed involvement of known pathways of lung development and repair (e.g., CD44 and phosphorus oxygen lyase activity) and indicated novel molecules and pathways (e.g., adenosine deaminase and targets of miR-219) involved in genetic predisposition to BPD. The genetic basis of severe BPD is different from that of mild/moderate BPD, and the variants/pathways associated with BPD vary by race/ethnicity. A pilot study of whole exome sequencing identified hundreds of genes of interest, and indicated the overall feasibility as well as complexity of this approach. Better phenotyping of BPD by severity and pathophysiology, and careful analysis of race/ethnicity is required to gain a better understanding of the genetic basis of BPD. Future translational studies are required for the identification of potential genetic predispositions (rare variants and dysregulated pathways) by next-generation sequencing methods in individual infants (personalized genomics).
Project description:Bronchopulmonary dysplasia (BPD) is a major complication in prematurely born infants. Pulmonary hypertension (PH) associated with BPD (BPD-PH) is characterized by alveolar diffusion impairment, abnormal vascular remodeling, and rarefication of pulmonary vessels (vascular growth arrest), which lead to increased pulmonary vascular resistance and right heart failure. About 25% of infants with moderate to severe BPD develop BPD-PH that is associated with high morbidity and mortality. The recent evolution of broader PH-targeted pharmacotherapy in adults has opened up new treatment options for infants with BPD-PH. Sildenafil became the mainstay of contemporary BPD-PH therapy. Additional medications, such as endothelin receptor antagonists and prostacyclin analogs/mimetics, are increasingly being investigated in infants with PH. However, pediatric data from prospective or randomized controlled trials are still sparse. We discuss comprehensive diagnostic and therapeutic strategies for BPD-PH and briefly review the relevant differential diagnoses of parenchymal and interstitial developmental lung diseases. In addition, we provide a practical framework for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH from the 2018 World Symposium on Pulmonary Hypertension, and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies. Finally, current gaps of knowledge and future research directions are discussed. IMPACT: PH in BPD substantially increases mortality. Treatment of BPD-PH should be conducted by an interdisciplinary team and follow our new treatment algorithm while still kept tailored to the individual patient. We discuss recent developments in BPD-PH, make recommendations on diagnosis, monitoring and treatment of PH in BPD, and address current gaps of knowledge and potential research directions. We provide a practical framework, including a new treatment algorithm, for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH (2018 WSPH) and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies for BPD-PH.
Project description:There are limited data on the effect of bronchopulmonary dysplasia (BPD) on sleep disordered breathing (SDB). We hypothesized that both the severity of prematurity and BPD would increase the likelihood of SDB in early childhood. Our secondary aim was to evaluate the association of demographic factors on the development of SDB.This is a retrospective study of patient factors and overnight polysomnogram (PSG) data of children enrolled in our BPD registry between 2008 and 2015. Association between PSG results and studied variables was assessed using multiple linear regression analysis.One-hundred-forty children underwent at least one sleep study on room air. The mean respiratory disturbance index (RDI) was elevated at 9.9 events/hr (SD: 10.1). The mean obstructive apnea-hypopnea index (OAHI) was 6.5 (9.1) events/hr and the mean central event rate of 3.0 (3.7) events/hr. RDI had decreased by 22% or 1.5 events/hour (95%CI: 0.6, 1.9) with each year of age (P?=?0.005). Subjects with more severe respiratory disease had 38% more central events (P?=?0.02). Infants exposed to secondhand smoke had 2.4% lower (P?=?0.04) oxygen saturation nadirs and a pattern for more desaturation events. Non-white subjects were found to have 33% higher OAHI (P?=?0.05), while white subjects had a 61% higher rate of central events (P?<?0.001).RDI was elevated in a selected BPD population compared to norms for non-preterm children. BPD severity, smoke exposure, and race may augment the severity of SDB. RDI improved with age but was still elevated by age 4, suggesting that this population is at risk for the sequelae of SDB.
Project description:OBJECTIVE:To identify single-nucleotide polymorphisms (SNPs) and pathways associated with bronchopulmonary dysplasia (BPD) because O2 requirement at 36 weeks' postmenstrual age risk is strongly influenced by heritable factors. STUDY DESIGN:A genome-wide scan was conducted on 1.2 million genotyped SNPs, and an additional 7 million imputed SNPs, using a DNA repository of extremely low birth weight infants. Genome-wide association and gene set analysis was performed for BPD or death, severe BPD or death, and severe BPD in survivors. Specific targets were validated via the use of gene expression in BPD lung tissue and in mouse models. RESULTS:Of 751 infants analyzed, 428 developed BPD or died. No SNPs achieved genome-wide significance (P < 10(-8)), although multiple SNPs in adenosine deaminase, CD44, and other genes were just below P < 10(-6). Of approximately 8000 pathways, 75 were significant at false discovery rate (FDR) <0.1 and P < .001 for BPD/death, 95 for severe BPD/death, and 90 for severe BPD in survivors. The pathway with lowest FDR was miR-219 targets (P = 1.41E-08, FDR 9.5E-05) for BPD/death and phosphorous oxygen lyase activity (includes adenylate and guanylate cyclases) for both severe BPD/death (P = 5.68E-08, FDR 0.00019) and severe BPD in survivors (P = 3.91E-08, FDR 0.00013). Gene expression analysis confirmed significantly increased miR-219 and CD44 in BPD. CONCLUSIONS:Pathway analyses confirmed involvement of known pathways of lung development and repair (CD44, phosphorus oxygen lyase activity) and indicated novel molecules and pathways (adenosine deaminase, targets of miR-219) involved in genetic predisposition to BPD.
Project description:Purpose of reviewBronchopulmonary dysplasia (BPD) is a prevalent chronic lung disease in premature infants. Twin studies have shown strong heritability underlying this disease; however, the genetic architecture of BPD remains unclear.Recent findingsA number of studies employed different approaches to characterize the genetic aberrations associated with BPD, including candidate gene studies, genome-wide association studies, exome sequencing, integrative omics analysis, and pathway analysis. Candidate gene studies identified a number of genes potentially involved with the development of BPD, but the etiological contribution from each gene is not substantial. Copy number variation studies and three independent genome-wide association studies did not identify genetic variations significantly and consistently associated with BPD. A recent exome-sequencing study pointed to rare variants implicated in the disease. In this review, we summarize these studies' methodology and findings, and suggest future research directions to better understand the genetic underpinnings of this potentially life-long lung disease.SummaryGenetic factors play a significant role in the development of BPD. Recent studies suggested that rare variants in genes participating in lung development pathways could contribute to BPD susceptibility.
Project description:Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder among infants born extremely preterm. The pathogenesis of BPD involves multiple prenatal and postnatal mechanisms affecting the development of a very immature lung. Their combined effects alter the lung's morphogenesis, disrupt capillary gas exchange in the alveoli, and lead to the pathological and clinical features of BPD. The disorder is ultimately the result of an aberrant repair response to antenatal and postnatal injuries to the developing lungs. Neonatology has made huge advances in dealing with conditions related to prematurity, but efforts to prevent and treat BPD have so far been only partially effective. Seeing that BPD appears to have a role in the early origin of chronic obstructive pulmonary disease, its prevention is pivotal also in long-term respiratory outcome of these patients. There is currently some evidence to support the use of antenatal glucocorticoids, surfactant therapy, protective noninvasive ventilation, targeted saturations, early caffeine treatment, vitamin A, and fluid restriction, but none of the existing strategies have had any significant impact in reducing the burden of BPD. New areas of research are raising novel therapeutic prospects, however. For instance, early topical (intratracheal or nebulized) steroids seem promising: they might help to limit BPD development without the side effects of systemic steroids. Evidence in favor of stem cell therapy has emerged from several preclinical trials, and from a couple of studies in humans. Mesenchymal stromal/stem cells (MSCs) have revealed a reparatory capability, preventing the progression of BPD in animal models. Administering MSC-conditioned media containing extracellular vesicles (EVs) have also demonstrated a preventive action, without the potential risks associated with unwanted engraftment or the adverse effects of administering cells. In this paper, we explore these emerging treatments and take a look at the revolutionary changes in BPD and neonatology on the horizon.