Unknown

Dataset Information

0

Infant Formula Feeding Increases Hepatic Cholesterol 7? Hydroxylase (CYP7A1) Expression and Fecal Bile Acid Loss in Neonatal Piglets.


ABSTRACT:

Background

During the postnatal feeding period, formula-fed infants have higher cholesterol synthesis rates and lower circulating cholesterol concentrations than their breastfed counterparts. Although this disparity has been attributed to the uniformly low dietary cholesterol content of typical infant formulas, little is known of the underlying mechanisms associated with this altered cholesterol metabolism phenotype.

Objective

We aimed to determine the molecular etiology of diet-associated changes in early-life cholesterol metabolism with the use of a postnatal piglet feeding model.

Methods

Two-day-old male and female White-Dutch Landrace piglets were fed either sow milk (Sow group) or dairy-based (Milk group; Similac Advance powder) or soy-based (Soy group; Emfamil Prosobee Lipil powder) infant formulas until day 21. In addition to measuring serum cholesterol concentrations, hepatic and intestinal genes involved in enterohepatic circulation of cholesterol and bile acids were analyzed by real-time reverse-transcriptase polymerase chain reaction and Western blot. Bile acid concentrations were measured by liquid chromatography-mass spectrometry in serum, liver, and feces.

Results

Compared with the Sow group, hepatic cholesterol 7? hydroxylase (CYP7A1) protein expression was 3-fold higher in the Milk group (P < 0.05) and expression was 10-fold higher in the Soy group compared with the Milk group (P < 0.05). Likewise, fecal bile acid concentrations were 3-fold higher in the Soy group compared with the Milk group (P < 0.05). Intestinal mRNA expression of fibroblast factor 19 (Fgf19) was reduced in the Milk and Soy groups, corresponding to 54% and 67% decreases compared with the Sow group. In the Soy group, small heterodimer protein (SHP) protein expression was 30% lower compared with the Sow group (P < 0.05).

Conclusions

These results indicate that formula feeding leads to increased CYP7A1 protein expression and fecal bile acid loss in neonatal piglets, and this outcome is linked to reduced efficacy in inhibiting CYP7A1 expression through FGF19 and SHP transcriptional repression mechanisms.

SUBMITTER: Mercer KE 

PROVIDER: S-EPMC6857617 | biostudies-literature | 2018 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Infant Formula Feeding Increases Hepatic Cholesterol 7α Hydroxylase (CYP7A1) Expression and Fecal Bile Acid Loss in Neonatal Piglets.

Mercer Kelly E KE   Bhattacharyya Sudeepa S   Diaz-Rubio Maria Elena ME   Piccolo Brian D BD   Pack Lindsay M LM   Sharma Neha N   Chaudhury Mousumi M   Cleves Mario A MA   Chintapalli Sree V SV   Shankar Kartik K   Ronis Martin J J MJJ   Yeruva Laxmi L  

The Journal of nutrition 20180501 5


<h4>Background</h4>During the postnatal feeding period, formula-fed infants have higher cholesterol synthesis rates and lower circulating cholesterol concentrations than their breastfed counterparts. Although this disparity has been attributed to the uniformly low dietary cholesterol content of typical infant formulas, little is known of the underlying mechanisms associated with this altered cholesterol metabolism phenotype.<h4>Objective</h4>We aimed to determine the molecular etiology of diet-a  ...[more]

Similar Datasets

| S-EPMC7893641 | biostudies-literature
| S-EPMC3735649 | biostudies-literature
| S-EPMC151029 | biostudies-literature
| S-EPMC6211808 | biostudies-literature
| S-EPMC5036364 | biostudies-literature
| S-EPMC4180720 | biostudies-literature
| S-EPMC6893479 | biostudies-literature
| S-EPMC10409167 | biostudies-literature
| S-EPMC5358015 | biostudies-literature
2021-03-31 | GSE168627 | GEO