Unknown

Dataset Information

0

Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology.


ABSTRACT: Recent work examining astrocytic physiology centers on fluorescence imaging, due to development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium activity. However, the field remains hindered in characterizing these dynamics, both within single cells and at the population level, because of the insufficiency of current region-of-interest-based approaches to describe activity that is often spatially unfixed, size-varying and propagative. Here we present an analytical framework that releases astrocyte biologists from region-of-interest-based tools. The Astrocyte Quantitative Analysis (AQuA) software takes an event-based perspective to model and accurately quantify complex calcium and neurotransmitter activity in fluorescence imaging datasets. We apply AQuA to a range of ex vivo and in vivo imaging data and use physiologically relevant parameters to comprehensively describe the data. Since AQuA is data-driven and based on machine learning principles, it can be applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate fundamental neural physiology.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC6858541 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology.

Wang Yizhi Y   DelRosso Nicole V NV   Vaidyanathan Trisha V TV   Cahill Michelle K MK   Reitman Michael E ME   Pittolo Silvia S   Mi Xuelong X   Yu Guoqiang G   Poskanzer Kira E KE  

Nature neuroscience 20190930 11


Recent work examining astrocytic physiology centers on fluorescence imaging, due to development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium activity. However, the field remains hindered in characterizing these dynamics, both within single cells and at the population level, because of the insufficiency of current region-of-interest-based approaches to describe activity that is often spatially unfixed, size-varying and propagative. Here we present an ana  ...[more]

Similar Datasets

| S-SCDT-10_15252-MSB_202211475 | biostudies-other
| S-EPMC9534301 | biostudies-literature
| S-EPMC4643230 | biostudies-literature
| S-EPMC2940119 | biostudies-literature
| S-EPMC6758720 | biostudies-literature
| S-EPMC6101504 | biostudies-literature
| S-EPMC8826380 | biostudies-literature
| S-EPMC2884258 | biostudies-literature
| S-EPMC1820734 | biostudies-literature
| S-EPMC6774397 | biostudies-literature