Ontology highlight
ABSTRACT: Background
Terrestrial ecosystems play a significant role in carbon (C) storage. Human activities, such as urbanization, infrastructure, and land use change, can reduce significantly the C stored in the soil. The aim of this research was to measure the spatial variability of soil organic C (SOC) in the national park La Malinche (NPLM) in the central highlands of Mexico as an example of highland ecosystems and to determine the impact of land use change on the SOC stocks through deterministic and geostatistical geographic information system (GIS) based methods.Methods
The soil was collected from different landscapes, that is, pine, fir, oak and mixed forests, natural grassland, moor and arable land, and organic C content determined. Different GIS-based deterministic (inverse distance weighting, local polynomial interpolation and radial basis function) and geostatistical interpolation techniques (ordinary kriging, cokriging and empirical Bayes kriging) were used to map the SOC stocks and other environmental variables of the top soil layer.Results
All interpolation GIS-based methods described the spatial distribution of SOC of the NPLM satisfactorily. The total SOC stock of the NPLM was 2.45 Tg C with 85.3% in the forest (1.26 Tg C in the A horizon and 0.83 Tg C in the O horizon), 11.4% in the arable soil (0.23 Tg in the A horizon and only 0.05 Tg C in the O horizon) and 3.3% in the high moor (0.07 Tg C in the A horizon and <0.01 Tg C in the O horizon). The estimated total SOC stock in a preserved part of the forest in NPLM was 4.98 Tg C in 1938 and has nearly halved since then. Continuing this trend of converting all the remaining forest to arable land will decrease the total SOC stock to 0.52 Tg C.Discussion
Different factors explain the large variations in SOC stocks found in this study but the change in land use (conversion of forests into agricultural lands) was the major reason for the reduction of the SOC stocks in the high mountain ecosystem of the NPLM. Large amounts of C, however, could be stored potentially in this ecosystem if the area was used more sustainable. The information derived from this study could be used to recommend strategies to reverse the SOC loss in NPLM and other high-altitude temperate forests and sequester larger quantities of C. This research can serve as a reference for the analysis of SOC distribution in similar mountain ecosystems in central part of Mexico and in other parts of the world.
SUBMITTER: Fusaro C
PROVIDER: S-EPMC6858984 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
PeerJ 20191114
<h4>Background</h4>Terrestrial ecosystems play a significant role in carbon (C) storage. Human activities, such as urbanization, infrastructure, and land use change, can reduce significantly the C stored in the soil. The aim of this research was to measure the spatial variability of soil organic C (SOC) in the national park La Malinche (NPLM) in the central highlands of Mexico as an example of highland ecosystems and to determine the impact of land use change on the SOC stocks through determinis ...[more]