Unknown

Dataset Information

0

An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction.


ABSTRACT: Despite III-V semiconductors demonstrating extraordinary solar-to-hydrogen (STH) conversion efficiencies, high cost and poor stability greatly impede their practical implementation in photoelectrochemical (PEC) water splitting applications. Here, we present a simple and efficient strategy for III-V-based photoelectrodes that functionally and spatially decouples the light harvesting component of the device from the electrolysis part that eliminates parasitic light absorption, reduces the cost, and enhances the stability without any compromise in efficiency. The monolithically integrated PEC cell was fabricated by an epitaxial lift-off and transfer of inversely grown InGaP/GaAs to a robust Ni-substrate and the resultant photoanode exhibits an STH efficiency of ~9% with stability ~150?h. Moreover, with the ability to access both sides of the device, we constructed a fully-integrated, unassisted-wireless "artificial leaf" system with an STH efficiency of ~6%. The excellent efficiency and stability achieved herein are attributed to the light harvesting/catalysis decoupling scheme, which concurrently improves the optical, electrical, and electrocatalytic characteristics.

SUBMITTER: Varadhan P 

PROVIDER: S-EPMC6872648 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction.

Varadhan Purushothaman P   Fu Hui-Chun HC   Kao Yu-Cheng YC   Horng Ray-Hua RH   He Jr-Hau JH  

Nature communications 20191121 1


Despite III-V semiconductors demonstrating extraordinary solar-to-hydrogen (STH) conversion efficiencies, high cost and poor stability greatly impede their practical implementation in photoelectrochemical (PEC) water splitting applications. Here, we present a simple and efficient strategy for III-V-based photoelectrodes that functionally and spatially decouples the light harvesting component of the device from the electrolysis part that eliminates parasitic light absorption, reduces the cost, an  ...[more]

Similar Datasets

| S-EPMC7794367 | biostudies-literature
| S-EPMC5476685 | biostudies-literature
| S-EPMC7304924 | biostudies-literature
| S-EPMC8121964 | biostudies-literature
| S-EPMC10870756 | biostudies-literature
| S-EPMC4951801 | biostudies-other
| S-EPMC11234434 | biostudies-literature
| S-EPMC8164171 | biostudies-literature
| S-EPMC5021169 | biostudies-literature
| S-EPMC7567062 | biostudies-literature