Unknown

Dataset Information

0

The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network.


ABSTRACT: The coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice. Here, we show that the mammalian SMYD3 methyltransferase coordinates skeletal muscle differentiation in vitro. Overexpression of SMYD3 in myoblasts promoted muscle differentiation and myoblasts fusion. Conversely, silencing of endogenous SMYD3 or its pharmacological inhibition impaired muscle differentiation. Genome-wide transcriptomic analysis of murine myoblasts, with silenced or overexpressed SMYD3, revealed that SMYD3 impacts skeletal muscle differentiation by targeting the key muscle regulatory factor myogenin. The role of SMYD3 in the regulation of skeletal muscle differentiation and myotube formation, partially via the myogenin transcriptional network, highlights the importance of methyltransferases in mammalian myogenesis.

SUBMITTER: Codato R 

PROVIDER: S-EPMC6872730 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network.

Codato Roberta R   Perichon Martine M   Divol Arnaud A   Fung Ella E   Sotiropoulos Athanassia A   Bigot Anne A   Weitzman Jonathan B JB   Medjkane Souhila S  

Scientific reports 20191121 1


The coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during developme  ...[more]

Similar Datasets

| S-EPMC2662004 | biostudies-literature
| S-EPMC10223939 | biostudies-literature
| S-EPMC6580565 | biostudies-literature
| S-EPMC4580549 | biostudies-literature
2021-12-01 | GSE178419 | GEO
| S-EPMC5785414 | biostudies-literature
| S-EPMC7511874 | biostudies-literature
| S-EPMC6691561 | biostudies-literature
| S-EPMC3136521 | biostudies-literature
| S-EPMC8248052 | biostudies-literature