A 2.5-years within-patient evolution of a Pseudomonas aeruginosa with in vivo acquisition of ceftolozane-tazobactam and ceftazidime-avibactam resistance upon treatment.
Ontology highlight
ABSTRACT: Ceftolozane-tazobactam is considered to be a last resort treatment for infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa Although, resistance to this antimicrobial have been described in vitro, development of resistance in vivo was rarely reported. Here, we described the evolution of resistance to ceftolozane-tazobactam of P. aeruginosa isolates recovered from the same patient during recurrent infections over 2.5 years.Antimicrobial susceptibility testing results showed that 24 of the 27 P. aeruginosa isolates recovered from blood (n=18), wound (n=2), pulmonary sample (n=1), bile (n=2) and stools (n=4) of the same patient were susceptible to ceftolozane-tazobactam and ceftazidime-avibactam but resistant to ceftazidime, piperacillin-tazobactam, imipenem and meropenem. Three clinical isolates acquired resistance to ceftolozane-tazobactam and ceftazidime-avibactam along with a partial restoration of piperacillin-tazobactam and carbapenems susceptibilities. Whole genome sequencing analysis reveals that all isolates were clonally related (ST-111) with a median of 24.9 single nucleotide polymorphisms (SNPs) (range 8-48). The ceftolozane-tazobactam and ceftazidime-avibactam resistance was likely linked to the same G183D substitution in the chromosome-encoded cephalosporinase.Our results suggest resistance to ceftolozane-tazobactam in P. aeruginosa might occur in vivo upon treatment through amino-acid substitution in the intrinsic AmpC leading to ceftolozane-tazobactam and ceftazidime-avibactam resistance accompanied by re-sensitization to piperacillin-tazobactam and carbapenems.
SUBMITTER: Boulant T
PROVIDER: S-EPMC6879234 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA