First Study of Antimicrobial Activity of Ceftazidime-Avibactam and Ceftolozane-Tazobactam Against Pseudomonas aeruginosa Isolated from Patients with Urinary Tract Infection in Tehran, Iran.
Ontology highlight
ABSTRACT: PurposePseudomonas aeruginosa causes complicated and/or nosocomial UTI. These infections are usually associated with severe and multi-drug resistant P. aeruginosa isolates. As there is no study about the activity of novel antibiotics ceftazidime-avibactam (CZA) and ceftolozane-tazobactam (C/T) against P. aeruginosa isolates in Iran, we aimed to evaluate for the first time the efficacy of these agents against P. aeruginosa isolated from patients with UTI in Iran. Then, the genetic diversity of the resistant isolates was assayed.MethodsIn this study, a total of 200 P. aeruginosa isolates were collected from patients with UTI in Tehran, Iran. Disk diffusion and Minimum Inhibitory Concentration (MIC) methods were applied to determine the resistance of the isolates to CZA, C/T, and the other antibiotics. Extended-spectrum ?-lactamases (ESBLs) and Metallo Beta Lactamase (MBL) production were assayed by Combination disk diffusion test (CDDT). Polymerase chain reaction (PCR) was carried out to detect the resistance genes, including beta-lactamases and carbapenemases genes. Finally, genomic analysis of the isolates was performed using the Pulse field gel electrophoresis (PFGE).ResultsAmong the isolates, 16 (8%) were resistant to CZA and C/T that MIC confirmed it. The resistant isolates showed high resistance to the other classes of antibiotics. Among the resistant isolates, 31.2% and 75% were ESBL and MBL producers, respectively. The prevalence of blaOXA10, blaVIM, blaOXA48, blaOXA2, and blaCTX-M was 100%, 50%, 31.2%, 25%, and 12.5%. Furthermore, two isolates (12.5%) harbored blaPER and blaNDM genes. The resistant isolates were grouped into 14 distinct pulsotypes and two shared pulsotypes were found.ConclusionCeftazidime-avibactam and ceftolozane-tazobactam showed high activity against the P. aeruginosa isolated from patients with UTI in Iran. The low rate of resistance to the antibiotics is also alarming and should be considered to avoid further spreading of the antibiotic resistance among the P. aeruginosa and the other bacteria.
SUBMITTER: Rahimzadeh M
PROVIDER: S-EPMC7034959 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA