Unknown

Dataset Information

0

An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data.


ABSTRACT: BACKGROUND:Rapid, preoperative identification of patients with the highest risk for medical complications is necessary to ensure that limited infrastructure and human resources are directed towards those most likely to benefit. Existing risk scores either lack specificity at the patient level or utilise the American Society of Anesthesiologists (ASA) physical status classification, which requires a clinician to review the chart. METHODS:We report on the use of machine learning algorithms, specifically random forests, to create a fully automated score that predicts postoperative in-hospital mortality based solely on structured data available at the time of surgery. Electronic health record data from 53 097 surgical patients (2.01% mortality rate) who underwent general anaesthesia between April 1, 2013 and December 10, 2018 in a large US academic medical centre were used to extract 58 preoperative features. RESULTS:Using a random forest classifier we found that automatically obtained preoperative features (area under the curve [AUC] of 0.932, 95% confidence interval [CI] 0.910-0.951) outperforms Preoperative Score to Predict Postoperative Mortality (POSPOM) scores (AUC of 0.660, 95% CI 0.598-0.722), Charlson comorbidity scores (AUC of 0.742, 95% CI 0.658-0.812), and ASA physical status (AUC of 0.866, 95% CI 0.829-0.897). Including the ASA physical status with the preoperative features achieves an AUC of 0.936 (95% CI 0.917-0.955). CONCLUSIONS:This automated score outperforms the ASA physical status score, the Charlson comorbidity score, and the POSPOM score for predicting in-hospital mortality. Additionally, we integrate this score with a previously published postoperative score to demonstrate the extent to which patient risk changes during the perioperative period.

SUBMITTER: Hill BL 

PROVIDER: S-EPMC6883494 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data.

Hill Brian L BL   Brown Robert R   Gabel Eilon E   Rakocz Nadav N   Lee Christine C   Cannesson Maxime M   Baldi Pierre P   Olde Loohuis Loes L   Johnson Ruth R   Jew Brandon B   Maoz Uri U   Mahajan Aman A   Sankararaman Sriram S   Hofer Ira I   Halperin Eran E  

British journal of anaesthesia 20191015 6


<h4>Background</h4>Rapid, preoperative identification of patients with the highest risk for medical complications is necessary to ensure that limited infrastructure and human resources are directed towards those most likely to benefit. Existing risk scores either lack specificity at the patient level or utilise the American Society of Anesthesiologists (ASA) physical status classification, which requires a clinician to review the chart.<h4>Methods</h4>We report on the use of machine learning alg  ...[more]

Similar Datasets

| S-EPMC8722098 | biostudies-literature
| S-EPMC5226062 | biostudies-literature
| S-EPMC7183252 | biostudies-literature
| S-EPMC4916370 | biostudies-literature
| S-EPMC7483253 | biostudies-literature
| S-EPMC9276734 | biostudies-literature
| S-EPMC6386402 | biostudies-literature
| S-EPMC9606847 | biostudies-literature
| S-EPMC9106858 | biostudies-literature
| S-EPMC3994640 | biostudies-literature