Ontology highlight
ABSTRACT: Background
Using the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) complication status of patients who underwent an operation at the University of Colorado Hospital, we developed a machine learning algorithm for identifying patients with one or more complications using data from the electronic health record (EHR).Methods
We used an elastic-net model to estimate regression coefficients and carry out variable selection. International classification of disease codes (ICD-9), common procedural terminology (CPT) codes, medications, and CPT-specific complication event rate were included as predictors.Results
Of 6840 patients, 922 (13.5%) had at least one of the 18 complications tracked by NSQIP. The model achieved 88% specificity, 83% sensitivity, 97% negative predictive value, 52% positive predictive value, and an area under the curve of 0.93.Conclusions
Using machine learning on EHR postoperative data linked to NSQIP outcomes data, a model with 163 predictors from the EHR identified complications well at our institution.
SUBMITTER: Bronsert M
PROVIDER: S-EPMC7183252 | biostudies-literature |
REPOSITORIES: biostudies-literature