Unknown

Dataset Information

0

Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays.


ABSTRACT: Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally deliver higher stability but have traditionally been more difficult to control, resulting in low yield. Here, we present a single-point-functionalization method for CNTFET arrays based on electrochemical control of a diazonium reaction to create sp3 defects, combined with a scalable spin-casting method for fabricating large arrays of devices on arbitrary substrates.  Attachment of probe DNA to the functionalized device enables single-molecule detection of DNA hybridization with complementary target, verifying the single-point functionalization. Overall, this method enables single-point defect generation with 80% yield.

SUBMITTER: Lee Y 

PROVIDER: S-EPMC6887518 | biostudies-literature | 2018 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays.

Lee Yoonhee Y   Trocchia Scott M SM   Warren Steven B SB   Young Erik F EF   Vernick Sefi S   Shepard Kenneth L KL  

ACS nano 20181003 10


Single-point-functionalized carbon-nanotube field-effect transistors (CNTFETs) have been used to sense conformational changes and binding events in protein and nucleic acid structures from intrinsic molecular charge. The key to utilizing these devices as single-molecule sensors is the ability to attach a single probe molecule to an individual device. In contrast, with noncovalent attachment approaches such as those based on van der Waals interactions, covalent attachment approaches generally del  ...[more]

Similar Datasets

| S-EPMC4802223 | biostudies-literature
| S-EPMC3566116 | biostudies-literature
| S-EPMC9049907 | biostudies-literature
| S-EPMC7541059 | biostudies-literature
| S-EPMC3103516 | biostudies-literature
| S-EPMC8859851 | biostudies-literature
| S-EPMC5062499 | biostudies-literature
| S-EPMC3374901 | biostudies-literature
| S-EPMC6610098 | biostudies-literature
| S-EPMC8160473 | biostudies-literature