Project description:Arterial pulmonary hypertension is a rare disease, with little knowledge regarding its etiology, and high mortality. Development of right and later on also left ventricular heart insufficiency, secondary to pulmonary hypertension, is a negative predictive factor. Genetic and molecular processes underlying left heart ventricle remodeling over the course of pulmonary hypertension remain unknown. In particular, there is no knowledge regarding the mechanisms of left heart ventricle atrophy which was completely avoided by researchers until recently.The aim of this study was to assess changes in protein abundance in left and right heart ventricle free wall of rats in monocrotaline model of PAH.
Project description:Cancer cells are often hypersensitive to the targeting of transcriptional regulators, which may reflect the deregulated gene expression programs that underlie malignant transformation. One of the most prominent transcriptional vulnerabilities in human cancer to emerge in recent years is the bromodomain and extraterminal (BET) family of proteins, which are coactivators that link acetylated transcription factors and histones to the activation of RNA polymerase II. Despite unclear mechanisms underlying the gene specificity of BET protein function, small molecules targeting these regulators preferentially suppress the transcription of cancer-promoting genes. As a consequence, BET inhibitors elicit anticancer activity in numerous malignant contexts at doses that can be tolerated by normal tissues, a finding supported by animal studies and by phase I clinical trials in human cancer patients. In this review, we will discuss the remarkable, and often perplexing, therapeutic effects of BET bromodomain inhibition in cancer.
Project description:Metastatic malignant melanoma continues to be a challenging disease despite clinical translation of the comprehensive understanding of driver mutations and how melanoma cells evade immune attack. In Myc-driven lymphoma, efficacy of epigenetic inhibitors of the bromodomain and extra-terminal domain (BET) family of bromodomain proteins can be enhanced by combination therapy with inhibitors of the DNA damage response kinase ATR. Whether this combination is active in solid malignancies like melanoma, and how it relates to immune therapy, has not previously investigated. To test efficacy and molecular consequences of combination therapies cultured melanoma cells were used. To assess tumor responses to therapies in vivo we use patient-derived xenografts and B6 mice transplanted with B16F10 melanoma cells. Concomitant inhibition of BET proteins and ATR of cultured melanoma cells resulted in similar effects as recently shown in lymphoma, such as induction of apoptosis and p62, implicated in autophagy, senescence-associated secretory pathway and ER stress. In vivo, apoptosis and suppression of subcutaneous growth of patient-derived melanoma and B16F10 cells were observed. Our data suggest that ATRI/BETI combination therapies are effective in melanoma.
Project description:ObjectiveThe Pulmonary Arterial hyperTENsion sGC-stimulator Trial-1 (PATENT-1) was a randomised, double-blind, placebo-controlled phase III trial evaluating riociguat in patients with pulmonary arterial hypertension (PAH). PATENT-2 was an open-label long-term extension to PATENT-1. Here, we explore the efficacy and safety of riociguat in the subgroup of patients with persistent/recurrent PAH after correction of congenital heart disease (PAH-CHD) from the PATENT studies.MethodsIn PATENT-1, patients received riociguat (maximum 2.5 or 1.5 mg three times daily) or placebo for 12 weeks; efficacy assessments included change from baseline to study end in 6-min walking distance (6MWD; primary), pulmonary vascular resistance (PVR), N-terminal of the prohormone of brain natriuretic peptide (NT-proBNP), WHO functional class (WHO FC) and time to clinical worsening. In PATENT-2, eligible patients from PATENT-1 received long-term riociguat (maximum 2.5 mg three times daily); the primary assessment was safety and tolerability. All PAH-CHD patients had a corrected cardiac defect.ResultsIn PATENT-1, riociguat increased mean±SD 6MWD from baseline to week 12 by 39±60 m in patients with PAH-CHD versus 0±42 m for placebo. Riociguat also improved several secondary variables versus placebo, including PVR (-250±410 vs -66±632 dyn·s/cm(5)), NT-proBNP (-164±317 vs -46±697 pg/mL) and WHO FC (21%/79%/0% vs 8%/83%/8% improved/stabilised/worsened). One patient experienced clinical worsening (riociguat 1.5 mg group). Riociguat was well tolerated. In PATENT-2, riociguat showed sustained efficacy and tolerability in patients with PAH-CHD at 2 years.ConclusionsRiociguat was well tolerated in patients with PAH-CHD and improved clinical outcomes including 6MWD, PVR, WHO FC and NT-proBNP.Trial registration numberThe clinical trials numbers are NCT00810693 for PATENT-1 and NCT00863681 for PATENT-2.
Project description:Background: As the most common types of pulmonary arterial hypertension (PAH) in childhood, the similarities and differences in clinical characteristics and prognosis between idiopathic PAH (IPAH) and PAH associated with congenital heart disease (PAH-CHD) are not well-known. This study describes and compares clinical features of pediatric IPAH and PAH-CHD in a single center of China during an 11-year period and explores the prognostic factors. Methods: Twenty-five children with IPAH and 60 children with PAH-CHD, diagnosed in West China Second Hospital of Sichuan University from January 2008 to December 2018, were chosen as study objects. The follow-up deadline was June 2019, and the end-point was all-cause death. The baseline data, results of auxiliary examinations, treatment strategies, and follow-up outcomes were recorded and compared between IPAH and PAH-CHD patients to explore the similarities, differences, and prognostic factors. Results: The median diagnostic age for PAH-CHD patients was 2.3 years, which was younger than IPAH patients (7.3 years; p = 0.009). Sixty-eight percent of the IPAH patients presented with exercise-induced symptoms at initial diagnosis, whereas 58.3% of the PAH-CHD patients were asymptomatic (p < 0.001). Sixty percent of the IPAH patients were in World Health Organization-functional class (WHO-FC) III or IV, which was significantly worse than those of the PAH-CHD patients (p = 0.002). The incidence of ST-segment and T-wave (ST-T) change in children with IPAH (76.0%) was significantly higher than that (28.3%) in children with PAH-CHD (p < 0.001). Mean corpuscular volume (MCV), mean platelet volume (MPV), and platelet distribution width were larger in IPAH patients than those in PAH-CHD patients (p < 0.01). The 1-, 3-, and 5-year survival rates of IPAH and PAH-CHD patients were 53.5, 46.5, and 31.2% and 96.5, 93.1, and 77.6%, respectively (p < 0.05). WHO-FC III-IV [relative risk (RR) = 2.750, p = 0.008] and higher MPV (RR = 1.657, p = 0.006) predicted poor prognosis for pediatric PAH. Conclusion: We showed that there are more differences than similarities between IPAH and PAH-CHD patients in clinical characteristics. PAH-CHD patients have a better prognosis than IPAH patients. WHO-FC III-IV and higher MPV at initial diagnosis are independent risk factors for poor prognosis.
Project description:Although multiple gene and protein expression have been extensively profiled in human pulmonary arterial hypertension (PAH), the mechanism for the development and progression of pulmonary hypertension remains elusive. Analysis of the global metabolomic heterogeneity within the pulmonary vascular system leads to a better understanding of disease progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung. The results suggest that PAH has specific metabolic pathways contributing to increased ATP synthesis for the vascular remodeling process in severe pulmonary hypertension. These identified metabolites may serve as potential biomarkers for the diagnosis of severe PAH. By profiling metabolomic alterations of the PAH lung, we reveal new pathogenic mechanisms of PAH in its later stage, which may differ from the earlier stage of PAH, opening an avenue of exploration for therapeutics that target metabolic pathway alterations in the progression of PAH. Global profiles were determined in human lung tissue and compared across 11 normal and 12 severe pulmonary arterial hypertension patients. Using a combination of microarray and high-throughput liquid-and-gas-chromatography-based mass spectrometry, we showed unbiased metabolomic profiles of disrupted glycolysis, increased TCA cycle, and fatty acid metabolites with altered oxidation pathways in the severe human PAH lung.