Project description:Arterial pulmonary hypertension is a rare disease, with little knowledge regarding its etiology, and high mortality. Development of right and later on also left ventricular heart insufficiency, secondary to pulmonary hypertension, is a negative predictive factor. Genetic and molecular processes underlying left heart ventricle remodeling over the course of pulmonary hypertension remain unknown. In particular, there is no knowledge regarding the mechanisms of left heart ventricle atrophy which was completely avoided by researchers until recently.The aim of this study was to assess changes in protein abundance in left and right heart ventricle free wall of rats in monocrotaline model of PAH.
Project description:Cancer cells are often hypersensitive to the targeting of transcriptional regulators, which may reflect the deregulated gene expression programs that underlie malignant transformation. One of the most prominent transcriptional vulnerabilities in human cancer to emerge in recent years is the bromodomain and extraterminal (BET) family of proteins, which are coactivators that link acetylated transcription factors and histones to the activation of RNA polymerase II. Despite unclear mechanisms underlying the gene specificity of BET protein function, small molecules targeting these regulators preferentially suppress the transcription of cancer-promoting genes. As a consequence, BET inhibitors elicit anticancer activity in numerous malignant contexts at doses that can be tolerated by normal tissues, a finding supported by animal studies and by phase I clinical trials in human cancer patients. In this review, we will discuss the remarkable, and often perplexing, therapeutic effects of BET bromodomain inhibition in cancer.
Project description:Metastatic malignant melanoma continues to be a challenging disease despite clinical translation of the comprehensive understanding of driver mutations and how melanoma cells evade immune attack. In Myc-driven lymphoma, efficacy of epigenetic inhibitors of the bromodomain and extra-terminal domain (BET) family of bromodomain proteins can be enhanced by combination therapy with inhibitors of the DNA damage response kinase ATR. Whether this combination is active in solid malignancies like melanoma, and how it relates to immune therapy, has not previously investigated. To test efficacy and molecular consequences of combination therapies cultured melanoma cells were used. To assess tumor responses to therapies in vivo we use patient-derived xenografts and B6 mice transplanted with B16F10 melanoma cells. Concomitant inhibition of BET proteins and ATR of cultured melanoma cells resulted in similar effects as recently shown in lymphoma, such as induction of apoptosis and p62, implicated in autophagy, senescence-associated secretory pathway and ER stress. In vivo, apoptosis and suppression of subcutaneous growth of patient-derived melanoma and B16F10 cells were observed. Our data suggest that ATRI/BETI combination therapies are effective in melanoma.
Project description:The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Project description:ObjectiveThe Pulmonary Arterial hyperTENsion sGC-stimulator Trial-1 (PATENT-1) was a randomised, double-blind, placebo-controlled phase III trial evaluating riociguat in patients with pulmonary arterial hypertension (PAH). PATENT-2 was an open-label long-term extension to PATENT-1. Here, we explore the efficacy and safety of riociguat in the subgroup of patients with persistent/recurrent PAH after correction of congenital heart disease (PAH-CHD) from the PATENT studies.MethodsIn PATENT-1, patients received riociguat (maximum 2.5 or 1.5 mg three times daily) or placebo for 12 weeks; efficacy assessments included change from baseline to study end in 6-min walking distance (6MWD; primary), pulmonary vascular resistance (PVR), N-terminal of the prohormone of brain natriuretic peptide (NT-proBNP), WHO functional class (WHO FC) and time to clinical worsening. In PATENT-2, eligible patients from PATENT-1 received long-term riociguat (maximum 2.5 mg three times daily); the primary assessment was safety and tolerability. All PAH-CHD patients had a corrected cardiac defect.ResultsIn PATENT-1, riociguat increased mean±SD 6MWD from baseline to week 12 by 39±60 m in patients with PAH-CHD versus 0±42 m for placebo. Riociguat also improved several secondary variables versus placebo, including PVR (-250±410 vs -66±632 dyn·s/cm(5)), NT-proBNP (-164±317 vs -46±697 pg/mL) and WHO FC (21%/79%/0% vs 8%/83%/8% improved/stabilised/worsened). One patient experienced clinical worsening (riociguat 1.5 mg group). Riociguat was well tolerated. In PATENT-2, riociguat showed sustained efficacy and tolerability in patients with PAH-CHD at 2 years.ConclusionsRiociguat was well tolerated in patients with PAH-CHD and improved clinical outcomes including 6MWD, PVR, WHO FC and NT-proBNP.Trial registration numberThe clinical trials numbers are NCT00810693 for PATENT-1 and NCT00863681 for PATENT-2.
Project description:Pulmonary arterial hypertension (PAH) is a serious complication of congenital heart disease (CHD). Without early surgical repair, around one-third of paediatric CHD patients develop significant PAH. Recent data from the Netherlands suggest that >4% of adult CHD patients have PAH, with higher rates in those with septal defects. A spectrum of cardiac defects is associated with PAH-CHD, although most cases develop as a consequence of large systemic-to-pulmonary shunts. Eisenmenger's syndrome, characterised by reversed pulmonary-to-systemic (right-to-left) shunt, represents the most advanced form of PAH-CHD and affects as many as 50% of those with PAH and left-to-right shunts. It is associated with the poorest outcome among patients with PAH-CHD. 40 yrs ago, ∼50% of children with CHD requiring intervention died within the first year, and <15% survived to adulthood. Subsequent advances in paediatric cardiology have seen most patients with CHD survive to adulthood, with resulting shifts in the demographics of CHD and PAH-CHD. The number of adults presenting with CHD is increasing and, although mortality is decreasing, morbidity is increasing as older patients are at increased risk of arrhythmia, heart failure, valve regurgitation and PAH. Data show that probability of PAH increases with age in patients with cardiac defects.