Unknown

Dataset Information

0

Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells.


ABSTRACT: The secondary analyses for correlates of risk of infection in the RV144 HIV-1 vaccine trial implicated vaccine-induced antibody-dependent cellular cytotoxicity (ADCC) responses in the observed protection, highlighting the importance of assessing such responses in ongoing and future HIV-1 vaccine trials. However, in vitro assays that detect ADCC activity in plasma from HIV-1 infected seropositive individuals are not always effective at detecting ADCC activity in plasma from HIV-1 vaccine recipients. In vivo, ADCC-mediating antibodies must operate at the site of infection, where effector cells are recruited and activated by a local milieu of chemokines and cytokines. Based on previous findings that interleukin 15 (IL-15) secretion increases during acute HIV-1 infection and enhances NK cell-mediated cytotoxicity, we hypothesized that IL-15 pretreatment of NK effector cells could be used to improve killing of infected cells by vaccine-induced antibodies capable of mediating ADCC. Using the HIV-1 infectious molecular clone (IMC)-infected target cell assay along with plasma samples from HIV-1 vaccine recipients, we found that IL-15 treatment of effector cells improved the ability of the vaccine-induced antibodies to recruit effector cells for ADCC. Through immunophenotyping experiments, we showed that this improved killing was likely due to IL-15 mediated activation of NK effector cells and higher intracellular levels of perforin and granzyme B in the IL-15 pretreated NK cells. We also found that using a 4-fold dilution series of plasma and subtraction of pre-vaccination responses resulted in lowest response rates among placebo recipients and significant separation between treatment groups. This represents the first attempt to utilize IL-15-treated effector cells and optimized analytical approaches to improve the detection of HIV-1 vaccine-induced ADCC responses and will inform analyses of future HIV vaccine clinical trials.

SUBMITTER: Fisher L 

PROVIDER: S-EPMC6890556 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells.

Fisher Leigh L   Zinter Melissa M   Stanfield-Oakley Sherry S   Carpp Lindsay N LN   Edwards R Whitney RW   Denny Thomas T   Moodie Zoe Z   Laher Fatima F   Bekker Linda-Gail LG   McElrath M Juliana MJ   Gilbert Peter B PB   Corey Lawrence L   Tomaras Georgia G   Pollara Justin J   Ferrari Guido G  

Frontiers in immunology 20191127


The secondary analyses for correlates of risk of infection in the RV144 HIV-1 vaccine trial implicated vaccine-induced antibody-dependent cellular cytotoxicity (ADCC) responses in the observed protection, highlighting the importance of assessing such responses in ongoing and future HIV-1 vaccine trials. However, <i>in vitro</i> assays that detect ADCC activity in plasma from HIV-1 infected seropositive individuals are not always effective at detecting ADCC activity in plasma from HIV-1 vaccine r  ...[more]

Similar Datasets

| S-EPMC5749662 | biostudies-literature
| S-EPMC8442231 | biostudies-literature
| S-EPMC8214220 | biostudies-literature
| S-EPMC5466991 | biostudies-literature
2014-01-22 | E-GEOD-52625 | biostudies-arrayexpress
| S-EPMC3916558 | biostudies-literature
2014-01-22 | GSE52625 | GEO
| S-EPMC2084390 | biostudies-literature
| S-EPMC3958033 | biostudies-literature
| S-EPMC5355127 | biostudies-literature