Full-Length Transcriptome Survey and Expression Analysis of Parasitoid Wasp Chouioia cunea upon Exposure to 1-Dodecene.
Ontology highlight
ABSTRACT: Chouioia cunea (Yang) is an endoparasitic wasp which parasitizes pupae and thus plays an important role in the biological control of the fall webworm (Hyphantria cunea Drury), an important quarantine pest in the entire world and a major invasive pest in China. For the purposes of investigating which proteins are involved in the response of C. cunea to 1-Docecene, one of the chemical compounds of pupae of H. cunea with a significant attracting action to mated female C. cunea, 11.5?Gb transcriptome data was sequenced on the PacBio RS II platform from 1-day old C. cunea adults to generate a reference assembly. Afterwards, 46.88?Gb of clean RNA-Seq data were obtained to assess the transcriptional response of these insects before and after the stimulation with 1-Docecene. After removing redundancy using CD-HIT, a sequence structure analysis predicted 29,105 complete coding sequence (CDS) regions, 51,458 single-sequence repeats (SSRs), and 2,375 long non-coding RNAs. Based on the early transcriptome sequencing in our laboratory, we revealed some new sequences corresponding to chemosensory genes such as odorant binding proteins (OBPs), odorant receptor (OR), gustatory receptors(GRs). Results of quantitative real-time PCR experiments revealed that CcOBP7, CcOBP18, CcCSP4, CcOR2, and CcGR18 were up-regulated after 1-Dodecene stimulation. In addition, the expression of 31 genes, including 1 gene related to phospholipid biosynthesis and 2 genes related to transmembrane transport were up-regulated after 1-Dodecene stimulation; meanwhile, the expression of 22 genes, including 5 genes related to protein phosphorylation and protein serine/threonine kinase activity were significantly down-regulated after 1-Dodecene stimulation. These results suggest that the attraction of adult C. cunea to 1-dodecane is associated with the transmembrane signal transduction and dephosphorylation of some proteins. Our findings will provide useful targets for further studies on the molecular mechanism of host recognition in C. cunea.
SUBMITTER: Pan L
PROVIDER: S-EPMC6890788 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA