Fenretinide, Tocilizumab, and Reparixin Provide Multifaceted Disruption of Oral Squamous Cell Carcinoma Stem Cell Properties: Implications for Tertiary Chemoprevention.
Ontology highlight
ABSTRACT: Locoregional recurrence of oral squamous cell carcinoma (OSCC) dramatically reduces patient survival. Further, as many OSCC recurrences are inoperable, radiotherapy and chemotherapy with or without biological adjuncts are the remaining treatment options. Although the tumors may initially respond, radiotherapy- and chemotherapy-resistant cancer stem cells (CSC) can readily repopulate OSCC tumors. Currently, following the initial OSCC treatment, patients are closely monitored until a recurrence or a second primary is detected. Identification of agents with complementary mechanisms to suppress CSC tumorigenic functions could change this passive approach. The goals of this study were twofold: (1) develop and validate CSC-enriched (CSCE) OSCC cell lines and (2) identify chemopreventive agents that obstruct multiple CSCE protumorigenic pathways. CSCE cultures, which were created by paclitaxel treatment followed by three tumorsphere passes, demonstrated CSC characteristics, including increased expression of stem cell and inflammatory genes, increased aldehyde dehydrogenase (ALDH) activity, and enhanced in vitro/in vivo proliferation and invasion. Three chemopreventives, fenretinide, tocilizumab, and reparixin, were selected due to their distinct and complementary CSC-disruptive mechanisms. The CSCE selection process modulated the cells' intermediate filaments resulting in an epithelial-predominant (enhanced cytokeratin, proliferation, IL6 release) line and a mesenchymal-predominant (upregulated vimentin, invasive, IL8 release) line. Our results confirm that 4HPR binds with appreciably higher affinity than Wnt at the Frizzled binding site and significantly inhibits CSC-enabling Wnt-?-catenin downstream signaling. Notably, combination fenretinide-tocilizumab-reparixin treatment significantly suppressed IL6 and IL8 release, stem cell gene expression, and invasion in these diverse CSCE populations. These promising multiagent in vitro data provide the basis for our upcoming in vivo CSCE tertiary chemoprevention studies.
SUBMITTER: Mallery SR
PROVIDER: S-EPMC6891199 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA