Unknown

Dataset Information

0

PEDIA: prioritization of exome data by image analysis.


ABSTRACT:

Purpose

Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists.

Methods

Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds.

Results

The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene.

Conclusion

Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.

SUBMITTER: Hsieh TC 

PROVIDER: S-EPMC6892739 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

PEDIA: prioritization of exome data by image analysis.

Hsieh Tzung-Chien TC   Mensah Martin A MA   Pantel Jean T JT   Aguilar Dione D   Bar Omri O   Bayat Allan A   Bayat Allan A   Becerra-Solano Luis L   Bentzen Heidi B HB   Biskup Saskia S   Borisov Oleg O   Braaten Oivind O   Ciaccio Claudia C   Coutelier Marie M   Cremer Kirsten K   Danyel Magdalena M   Daschkey Svenja S   Eden Hilda David HD   Devriendt Koenraad K   Wilson Sandra S   Douzgou Sofia S   Đukić Dejan D   Ehmke Nadja N   Fauth Christine C   Fischer-Zirnsak Björn B   Fleischer Nicole N   Gabriel Heinz H   Graul-Neumann Luitgard L   Gripp Karen W KW   Gurovich Yaron Y   Gusina Asya A   Haddad Nechama N   Hajjir Nurulhuda N   Hanani Yair Y   Hertzberg Jakob J   Hoertnagel Konstanze K   Howell Janelle J   Ivanovski Ivan I   Kaindl Angela A   Kamphans Tom T   Kamphausen Susanne S   Karimov Catherine C   Kathom Hadil H   Keryan Anna A   Knaus Alexej A   Köhler Sebastian S   Kornak Uwe U   Lavrov Alexander A   Leitheiser Maximilian M   Lyon Gholson J GJ   Mangold Elisabeth E   Reina Purificación Marín PM   Carrascal Antonio Martinez AM   Mitter Diana D   Herrador Laura Morlan LM   Nadav Guy G   Nöthen Markus M   Orrico Alfredo A   Ott Claus-Eric CE   Park Kristen K   Peterlin Borut B   Pölsler Laura L   Raas-Rothschild Annick A   Randolph Linda L   Revencu Nicole N   Fagerberg Christina Ringmann CR   Robinson Peter Nick PN   Rosnev Stanislav S   Rudnik Sabine S   Rudolf Gorazd G   Schatz Ulrich U   Schossig Anna A   Schubach Max M   Shanoon Or O   Sheridan Eamonn E   Smirin-Yosef Pola P   Spielmann Malte M   Suk Eun-Kyung EK   Sznajer Yves Y   Thiel Christian T CT   Thiel Gundula G   Verloes Alain A   Vrecar Irena I   Wahl Dagmar D   Weber Ingrid I   Winter Korina K   Wiśniewska Marzena M   Wollnik Bernd B   Yeung Ming W MW   Zhao Max M   Zhu Na N   Zschocke Johannes J   Mundlos Stefan S   Horn Denise D   Krawitz Peter M PM  

Genetics in medicine : official journal of the American College of Medical Genetics 20190605 12


<h4>Purpose</h4>Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists.<h4>Methods</h4>Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 indi  ...[more]

Similar Datasets

| S-EPMC5329159 | biostudies-literature
| S-EPMC4602202 | biostudies-literature
| S-EPMC7230372 | biostudies-literature
| S-EPMC4929867 | biostudies-other
| S-EPMC6777628 | biostudies-literature
| S-EPMC3951946 | biostudies-literature
| S-EPMC3912424 | biostudies-literature
| S-EPMC7384537 | biostudies-literature
| S-EPMC3673212 | biostudies-literature
| S-EPMC5737281 | biostudies-literature