A new finite element based parameter to predict bone fracture.
Ontology highlight
ABSTRACT: Dual Energy X-Ray Absorptiometry (DXA) is currently the most widely adopted non-invasive clinical technique to assess bone mineral density and bone mineral content in human research and represents the primary tool for the diagnosis of osteoporosis. DXA measures areal bone mineral density, BMD, which does not account for the three-dimensional structure of the vertebrae and for the distribution of bone mass. The result is that longitudinal DXA can only predict about 70% of vertebral fractures. This study proposes a complementary tool, based on Finite Element (FE) models, to improve the DXA accuracy. Bone is simulated as elastic and inhomogeneous material, with stiffness distribution derived from DXA greyscale images of density. The numerical procedure simulates a compressive load on each vertebra to evaluate the local minimum principal strain values. From these values, both the local average and the maximum strains are computed over the cross sections and along the height of the analysed bone region, to provide a parameter, named Strain Index of Bone (SIB), which could be considered as a bone fragility index. The procedure is initially validated on 33 cylindrical trabecular bone samples obtained from porcine lumbar vertebrae, experimentally tested under static compressive loading. Comparing the experimental mechanical parameters with the SIB, we could find a higher correlation of the ultimate stress, ?ULT, with the SIB values (R2adj = 0.63) than that observed with the conventional DXA-based clinical parameters, i.e. Bone Mineral Density, BMD (R2adj = 0.34) and Trabecular Bone Score, TBS (R2adj = -0.03). The paper finally presents a few case studies of numerical simulations carried out on human lumbar vertebrae. If our results are confirmed in prospective studies, SIB could be used-together with BMD and TBS-to improve the fracture risk assessment and support the clinical decision to assume specific drugs for metabolic bone diseases.
SUBMITTER: Colombo C
PROVIDER: S-EPMC6894848 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
ACCESS DATA