Unknown

Dataset Information

0

Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors.


ABSTRACT: Simultaneous control over both the energy levels and Fermi level, a key breakthrough for inorganic electronics, has yet to be shown for organic semiconductors. Here, energy level tuning and molecular doping are combined to demonstrate controlled shifts in ionisation potential and Fermi level of an organic thin film. This is achieved by p-doping a blend of two host molecules, zinc phthalocyanine and its eight-times fluorinated derivative, with tunable energy levels based on mixing ratio. The doping efficiency is found to depend on host mixing ratio, which is explained using a statistical model that includes both shifts of the host's ionisation potentials and, importantly, the electron affinity of the dopant. Therefore, the energy level tuning effect has a crucial impact on the molecular doping process. The practice of comparing host and dopant energy levels must consider the long-range electrostatic shifts to consistently explain the doping mechanism in organic semiconductors.

SUBMITTER: Warren R 

PROVIDER: S-EPMC6895164 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors.

Warren Ross R   Privitera Alberto A   Kaienburg Pascal P   Lauritzen Andreas E AE   Thimm Oliver O   Nelson Jenny J   Riede Moritz K MK  

Nature communications 20191205 1


Simultaneous control over both the energy levels and Fermi level, a key breakthrough for inorganic electronics, has yet to be shown for organic semiconductors. Here, energy level tuning and molecular doping are combined to demonstrate controlled shifts in ionisation potential and Fermi level of an organic thin film. This is achieved by p-doping a blend of two host molecules, zinc phthalocyanine and its eight-times fluorinated derivative, with tunable energy levels based on mixing ratio. The dopi  ...[more]

Similar Datasets

| S-EPMC5295828 | biostudies-literature
| S-EPMC10008838 | biostudies-literature
| S-EPMC9091383 | biostudies-literature
| S-EPMC6891860 | biostudies-literature
| S-EPMC6643516 | biostudies-literature
| S-EPMC10304932 | biostudies-literature
| S-EPMC4973851 | biostudies-literature
| S-EPMC8065160 | biostudies-literature
| S-EPMC31852 | biostudies-literature
| S-EPMC9384154 | biostudies-literature