Unknown

Dataset Information

0

A Deep Learning Framework for Design and Analysis of Surgical Bioprosthetic Heart Valves.


ABSTRACT: Bioprosthetic heart valves (BHVs) are commonly used as heart valve replacements but they are prone to fatigue failure; estimating their remaining life directly from medical images is difficult. Analyzing the valve performance can provide better guidance for personalized valve design. However, such analyses are often computationally intensive. In this work, we introduce the concept of deep learning (DL) based finite element analysis (DLFEA) to learn the deformation biomechanics of bioprosthetic aortic valves directly from simulations. The proposed DL framework can eliminate the time-consuming biomechanics simulations, while predicting valve deformations with the same fidelity. We present statistical results that demonstrate the high performance of the DLFEA framework and the applicability of the framework to predict bioprosthetic aortic valve deformations. With further development, such a tool can provide fast decision support for designing surgical bioprosthetic aortic valves. Ultimately, this framework could be extended to other BHVs and improve patient care.

SUBMITTER: Balu A 

PROVIDER: S-EPMC6898064 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Deep Learning Framework for Design and Analysis of Surgical Bioprosthetic Heart Valves.

Balu Aditya A   Nallagonda Sahiti S   Xu Fei F   Krishnamurthy Adarsh A   Hsu Ming-Chen MC   Sarkar Soumik S  

Scientific reports 20191206 1


Bioprosthetic heart valves (BHVs) are commonly used as heart valve replacements but they are prone to fatigue failure; estimating their remaining life directly from medical images is difficult. Analyzing the valve performance can provide better guidance for personalized valve design. However, such analyses are often computationally intensive. In this work, we introduce the concept of deep learning (DL) based finite element analysis (DLFEA) to learn the deformation biomechanics of bioprosthetic a  ...[more]

Similar Datasets

| S-EPMC6470412 | biostudies-literature
| S-EPMC4286305 | biostudies-literature
| S-EPMC7843970 | biostudies-literature
| S-EPMC9293484 | biostudies-literature
| S-EPMC7198640 | biostudies-literature
2023-05-16 | GSE232161 | GEO