Unknown

Dataset Information

0

Tailored Transition-Metal Coordination Environments in Imidazole-Modified DNA G-Quadruplexes.


ABSTRACT: Two types of imidazole ligands were introduced both at the end of tetramolecular and into the loop region of unimolecular DNA G-quadruplexes. The modified oligonucleotides were shown to complex a range of different transition-metal cations including NiII , CuII , ZnII and CoII , as indicated by UV/Vis absorption spectroscopy and ion mobility mass spectrometry. Molecular dynamics simulations were performed to obtain structural insight into the investigated systems. Variation of ligand number and position in the loop region of unimolecular sequences derived from the human telomer region (htel) allows for a controlled design of distinct coordination environments with fine-tuned metal affinities. It is shown that CuII , which is typically square-planar coordinated, has a higher affinity for systems offering four ligands, whereas NiII prefers G-quadruplexes with six ligands. Likewise, the positioning of ligands in a square-planar versus tetrahedral fashion affects binding affinities of CuII and ZnII cations, respectively. Gaining control over ligand arrangement patterns will spur the rational development of transition-metal-modified DNAzymes. Furthermore, this method is suited to combine different types of ligands, for example, those typically found in metalloenzymes, inside a single DNA architecture.

SUBMITTER: Punt PM 

PROVIDER: S-EPMC6899475 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tailored Transition-Metal Coordination Environments in Imidazole-Modified DNA G-Quadruplexes.

Punt Philip M PM   Clever Guido H GH  

Chemistry (Weinheim an der Bergstrasse, Germany) 20191010 61


Two types of imidazole ligands were introduced both at the end of tetramolecular and into the loop region of unimolecular DNA G-quadruplexes. The modified oligonucleotides were shown to complex a range of different transition-metal cations including Ni<sup>II</sup> , Cu<sup>II</sup> , Zn<sup>II</sup> and Co<sup>II</sup> , as indicated by UV/Vis absorption spectroscopy and ion mobility mass spectrometry. Molecular dynamics simulations were performed to obtain structural insight into the investiga  ...[more]

Similar Datasets

| S-EPMC7000376 | biostudies-literature
| S-EPMC6399679 | biostudies-literature
| S-EPMC4748213 | biostudies-literature
| S-EPMC9047003 | biostudies-literature
| S-EPMC6017066 | biostudies-literature
| S-EPMC9303293 | biostudies-literature
| S-EPMC5347150 | biostudies-literature
| S-EPMC10398360 | biostudies-literature
| S-EPMC6403557 | biostudies-literature
| S-EPMC4288195 | biostudies-literature