Unknown

Dataset Information

0

Void distributions reveal structural link between jammed packings and protein cores.


ABSTRACT: Dense packing of hydrophobic residues in the cores of globular proteins determines their stability. Recently, we have shown that protein cores possess packing fraction ??0.56, which is the same as dense, random packing of amino-acid-shaped particles. In this article, we compare the structural properties of protein cores and jammed packings of amino-acid-shaped particles in much greater depth by measuring their local and connected void regions. We find that the distributions of surface Voronoi cell volumes and local porosities obey similar statistics in both systems. We also measure the probability that accessible, connected void regions percolate as a function of the size of a spherical probe particle and show that both systems possess the same critical probe size. We measure the critical exponent ? that characterizes the size distribution of connected void clusters at the onset of percolation. We find that the cluster size statistics are similar for void percolation in packings of amino-acid-shaped particles and randomly placed spheres, but different from that for void percolation in jammed sphere packings. We propose that the connected void regions are a defining structural feature of proteins and can be used to differentiate experimentally observed proteins from decoy structures that are generated using computational protein design software. This work emphasizes that jammed packings of amino-acid-shaped particles can serve as structural and mechanical analogs of protein cores, and could therefore be useful in modeling the response of protein cores to cavity-expanding and -reducing mutations.

SUBMITTER: Treado JD 

PROVIDER: S-EPMC6902428 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Void distributions reveal structural link between jammed packings and protein cores.

Treado John D JD   Mei Zhe Z   Regan Lynne L   O'Hern Corey S CS  

Physical review. E 20190201 2-1


Dense packing of hydrophobic residues in the cores of globular proteins determines their stability. Recently, we have shown that protein cores possess packing fraction ϕ≈0.56, which is the same as dense, random packing of amino-acid-shaped particles. In this article, we compare the structural properties of protein cores and jammed packings of amino-acid-shaped particles in much greater depth by measuring their local and connected void regions. We find that the distributions of surface Voronoi ce  ...[more]

Similar Datasets

| S-EPMC4644945 | biostudies-literature
| S-EPMC4284597 | biostudies-literature
| S-EPMC7415476 | biostudies-literature
| S-EPMC7784743 | biostudies-literature
| S-EPMC6892859 | biostudies-literature
| S-EPMC4570995 | biostudies-literature
| S-EPMC10480496 | biostudies-literature
2011-05-11 | E-GEOD-28062 | biostudies-arrayexpress
| S-EPMC2694912 | biostudies-literature
| S-EPMC4065209 | biostudies-literature